論文の概要: Jailbreaking and Mitigation of Vulnerabilities in Large Language Models
- arxiv url: http://arxiv.org/abs/2410.15236v1
- Date: Sun, 20 Oct 2024 00:00:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:21:39.596660
- Title: Jailbreaking and Mitigation of Vulnerabilities in Large Language Models
- Title(参考訳): 大規模言語モデルにおける脱獄と脆弱性軽減
- Authors: Benji Peng, Ziqian Bi, Qian Niu, Ming Liu, Pohsun Feng, Tianyang Wang, Lawrence K. Q. Yan, Yizhu Wen, Yichao Zhang, Caitlyn Heqi Yin,
- Abstract要約: 大規模言語モデル(LLM)は、自然言語の理解と生成を前進させることで、人工知能を変革した。
これらの進歩にもかかわらず、LSMは、特に注射と脱獄攻撃を急ぐために、かなりの脆弱性を示してきた。
このレビューでは、これらの脆弱性についての研究状況を分析し、利用可能な防衛戦略を提示する。
- 参考スコア(独自算出の注目度): 4.564507064383306
- License:
- Abstract: Large Language Models (LLMs) have transformed artificial intelligence by advancing natural language understanding and generation, enabling applications across fields beyond healthcare, software engineering, and conversational systems. Despite these advancements in the past few years, LLMs have shown considerable vulnerabilities, particularly to prompt injection and jailbreaking attacks. This review analyzes the state of research on these vulnerabilities and presents available defense strategies. We roughly categorize attack approaches into prompt-based, model-based, multimodal, and multilingual, covering techniques such as adversarial prompting, backdoor injections, and cross-modality exploits. We also review various defense mechanisms, including prompt filtering, transformation, alignment techniques, multi-agent defenses, and self-regulation, evaluating their strengths and shortcomings. We also discuss key metrics and benchmarks used to assess LLM safety and robustness, noting challenges like the quantification of attack success in interactive contexts and biases in existing datasets. Identifying current research gaps, we suggest future directions for resilient alignment strategies, advanced defenses against evolving attacks, automation of jailbreak detection, and consideration of ethical and societal impacts. This review emphasizes the need for continued research and cooperation within the AI community to enhance LLM security and ensure their safe deployment.
- Abstract(参考訳): 大規模言語モデル(LLM)は、自然言語の理解と生成を推進し、医療、ソフトウェア工学、会話システム以外の分野にまたがるアプリケーションを可能にすることによって、人工知能を変革した。
過去数年間のこれらの進歩にもかかわらず、LSMは、特に注射と脱獄攻撃を急ぐために、重大な脆弱性を示してきた。
このレビューでは、これらの脆弱性についての研究状況を分析し、利用可能な防衛戦略を提示する。
提案手法は,大まかに分類して,プロンプトベース,モデルベース,マルチモーダル,多言語に分類し,敵対的プロンプト,バックドアインジェクション,相互モダリティエクスプロイトなどのテクニックをカバーしている。
また,迅速なフィルタリング,変換,アライメント技術,マルチエージェント・ディフェンス,自己規制など,様々な防御機構について検討し,その強度と欠点を評価した。
また、LLMの安全性と堅牢性を評価するために使用される主要な指標とベンチマークについても論じ、インタラクティブなコンテキストにおける攻撃成功の定量化や既存のデータセットのバイアスといった課題に言及する。
現在の研究ギャップの特定、弾力性のあるアライメント戦略の今後の方向性、進化する攻撃に対する先進的な防御、脱獄検知の自動化、倫理的・社会的影響の考慮を提案する。
このレビューでは、LLMのセキュリティを強化し、安全なデプロイメントを保証するために、AIコミュニティ内での継続的な研究と協力の必要性を強調している。
関連論文リスト
- Recent advancements in LLM Red-Teaming: Techniques, Defenses, and Ethical Considerations [0.0]
大規模言語モデル(LLM)は自然言語処理タスクにおいて顕著な機能を示しているが、Jailbreak攻撃に対する脆弱性は重大なセキュリティリスクをもたらす。
本稿では,Large Language Model (LLM) のレッドチームにおける攻撃戦略と防御機構の最近の進歩を包括的に分析する。
論文 参考訳(メタデータ) (2024-10-09T01:35:38Z) - Recent Advances in Attack and Defense Approaches of Large Language Models [27.271665614205034]
大規模言語モデル(LLM)は、高度なテキスト処理と生成機能を通じて、人工知能と機械学習に革命をもたらした。
彼らの広範な展開は、重大な安全性と信頼性の懸念を引き起こした。
本稿は,LLMの脆弱性と脅威に関する最近の研究をレビューし,現代防衛機構の有効性を評価する。
論文 参考訳(メタデータ) (2024-09-05T06:31:37Z) - A Survey of Attacks on Large Vision-Language Models: Resources, Advances, and Future Trends [78.3201480023907]
LVLM(Large Vision-Language Models)は、多モーダルな理解と推論タスクにまたがる顕著な能力を示す。
LVLMの脆弱性は比較的過小評価されており、日々の使用において潜在的なセキュリティリスクを生じさせる。
本稿では,既存のLVLM攻撃の様々な形態について概説する。
論文 参考訳(メタデータ) (2024-07-10T06:57:58Z) - MirrorCheck: Efficient Adversarial Defense for Vision-Language Models [55.73581212134293]
本稿では,視覚言語モデルにおける対角的サンプル検出のための,新しい,しかしエレガントなアプローチを提案する。
本手法は,テキスト・トゥ・イメージ(T2I)モデルを用いて,ターゲットVLMが生成したキャプションに基づいて画像を生成する。
異なるデータセットで実施した経験的評価により,本手法の有効性が検証された。
論文 参考訳(メタデータ) (2024-06-13T15:55:04Z) - AutoJailbreak: Exploring Jailbreak Attacks and Defenses through a Dependency Lens [83.08119913279488]
本稿では,ジェイルブレイク攻撃と防衛技術における依存関係の体系的解析について述べる。
包括的な、自動化された、論理的な3つのフレームワークを提案します。
このアンサンブル・ジェイルブレイク・アタックと防衛の枠組みは,既存の研究を著しく上回る結果となった。
論文 参考訳(メタデータ) (2024-06-06T07:24:41Z) - Generative AI and Large Language Models for Cyber Security: All Insights You Need [0.06597195879147556]
本稿では,ジェネレーティブAIとLarge Language Models(LLMs)によるサイバーセキュリティの将来を概観する。
ハードウェア設計のセキュリティ、侵入検知、ソフトウェアエンジニアリング、設計検証、サイバー脅威インテリジェンス、マルウェア検出、フィッシング検出など、さまざまな領域にわたるLCMアプリケーションを探索する。
GPT-4, GPT-3.5, Mixtral-8x7B, BERT, Falcon2, LLaMA などのモデルの発展に焦点を当て, LLM の進化とその現状について概説する。
論文 参考訳(メタデータ) (2024-05-21T13:02:27Z) - Breaking Down the Defenses: A Comparative Survey of Attacks on Large Language Models [18.624280305864804]
大規模言語モデル(LLM)は自然言語処理(NLP)分野の基盤となっている。
本稿では,LSMを標的とした様々な攻撃形態の包括的調査を行う。
モデルアウトプットを操作するための敵攻撃、モデルトレーニングに影響を与えるデータ中毒、データエクスプロイトのトレーニングに関連するプライバシー上の懸念などについて調べる。
論文 参考訳(メタデータ) (2024-03-03T04:46:21Z) - Survey of Vulnerabilities in Large Language Models Revealed by
Adversarial Attacks [5.860289498416911]
大規模言語モデル(LLM)はアーキテクチャと能力において急速に進歩しています。
複雑なシステムに深く統合されるにつれて、セキュリティ特性を精査する緊急性が高まっている。
本稿では,LSMに対する対人攻撃の新たな学際的分野について調査する。
論文 参考訳(メタデータ) (2023-10-16T21:37:24Z) - Baseline Defenses for Adversarial Attacks Against Aligned Language
Models [109.75753454188705]
最近の研究は、テキストのモデレーションが防御をバイパスするジェイルブレイクのプロンプトを生み出すことを示している。
検出(複雑度に基づく)、入力前処理(言い換えと再帰化)、対人訓練の3種類の防衛について検討する。
テキストに対する既存の離散化の弱点と比較的高いコストの最適化が組み合わさって、標準適応攻撃をより困難にしていることがわかった。
論文 参考訳(メタデータ) (2023-09-01T17:59:44Z) - Visual Adversarial Examples Jailbreak Aligned Large Language Models [66.53468356460365]
視覚入力の連続的かつ高次元的な性質は、敵対的攻撃に対する弱いリンクであることを示す。
我々は、視力統合されたLLMの安全ガードレールを回避するために、視覚的敵の例を利用する。
本研究は,マルチモダリティの追求に伴う敵のエスカレーションリスクを浮き彫りにする。
論文 参考訳(メタデータ) (2023-06-22T22:13:03Z) - Towards Automated Classification of Attackers' TTPs by combining NLP
with ML Techniques [77.34726150561087]
我々は,NLP(Natural Language Processing)と,研究におけるセキュリティ情報抽出に使用される機械学習技術の評価と比較を行った。
本研究では,攻撃者の戦術や手法に従って非構造化テキストを自動的に分類するデータ処理パイプラインを提案する。
論文 参考訳(メタデータ) (2022-07-18T09:59:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。