論文の概要: Neuroscience inspired scientific machine learning (Part-1): Variable
spiking neuron for regression
- arxiv url: http://arxiv.org/abs/2311.09267v1
- Date: Wed, 15 Nov 2023 08:59:06 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-17 18:22:11.782943
- Title: Neuroscience inspired scientific machine learning (Part-1): Variable
spiking neuron for regression
- Title(参考訳): 神経科学にインスパイアされた科学機械学習(その1) : 回帰のための可変スパイキングニューロン
- Authors: Shailesh Garg and Souvik Chakraborty
- Abstract要約: 本稿では、VSN(Variable Spiking Neuron)と呼ばれる新しいスパイクニューロンを紹介する。
生物学的ニューロンによるLeaky Integrate and Fire Spiking Neurons(LIF-SN)の学習による冗長な発射の低減
- 参考スコア(独自算出の注目度): 2.1756081703276
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Redundant information transfer in a neural network can increase the
complexity of the deep learning model, thus increasing its power consumption.
We introduce in this paper a novel spiking neuron, termed Variable Spiking
Neuron (VSN), which can reduce the redundant firing using lessons from
biological neuron inspired Leaky Integrate and Fire Spiking Neurons (LIF-SN).
The proposed VSN blends LIF-SN and artificial neurons. It garners the advantage
of intermittent firing from the LIF-SN and utilizes the advantage of continuous
activation from the artificial neuron. This property of the proposed VSN makes
it suitable for regression tasks, which is a weak point for the vanilla spiking
neurons, all while keeping the energy budget low. The proposed VSN is tested
against both classification and regression tasks. The results produced advocate
favorably towards the efficacy of the proposed spiking neuron, particularly for
regression tasks.
- Abstract(参考訳): ニューラルネットワークにおける冗長な情報転送は、ディープラーニングモデルの複雑さを増大させ、消費電力を増加させる。
本稿では,生物ニューロンにインスパイアされたLeaky Integrate and Fire Spiking Neurons(LIF-SN)の教訓を用いて,冗長な発射を低減できる新しいスパイクニューロンであるVSNを紹介する。
提案したVSNはLIF-SNと人工ニューロンを混合する。
LIF-SNからの間欠的発射の利点を生かし、人工ニューロンからの連続的な活性化の利点を利用する。
提案したVSNの特性は、エネルギー予算を低く保ちながらバニラスパイクニューロンの弱点である回帰タスクに適合する。
提案するvsnは分類と回帰の両方のタスクに対してテストされる。
その結果、特に回帰作業において、提案されたスパイキングニューロンの有効性を優先的に主張した。
関連論文リスト
- Hebbian Learning based Orthogonal Projection for Continual Learning of
Spiking Neural Networks [74.3099028063756]
我々は,側方接続とヘビアン学習に基づくニューラル操作を用いた新しい手法を開発した。
我々は,反復する側方接続におけるヘビアン学習と反ヘビアン学習が,神経活動の主部分空間を効果的に抽出できることを示した。
我々の手法は、ほとんど忘れることなくニューラルネットワークをスパイクするために一貫して解決する。
論文 参考訳(メタデータ) (2024-02-19T09:29:37Z) - Fast gradient-free activation maximization for neurons in spiking neural networks [5.805438104063613]
このようなループのための効率的な設計のフレームワークを提案する。
トレーニング中の人工ニューロンの最適刺激の変化を追跡する。
この洗練された最適刺激の形成は、分類精度の増大と関連している。
論文 参考訳(メタデータ) (2023-12-28T18:30:13Z) - Complex Dynamic Neurons Improved Spiking Transformer Network for
Efficient Automatic Speech Recognition [8.998797644039064]
リークインテグレーテッド・アンド・ファイア(LIF)ニューロンを用いたスパイクニューラルネットワーク(SNN)は、音声認識(ASR)タスクで一般的に用いられている。
ここでは、スパイキングトランスから生成された逐次パターンを後処理する4種類の神経力学を紹介する。
その結果,DyTr-SNNは音素誤り率の低下,計算コストの低下,ロバスト性の向上など,非トイ自動音声認識タスクをうまく処理できることがわかった。
論文 参考訳(メタデータ) (2023-02-02T16:20:27Z) - Neural network with optimal neuron activation functions based on
additive Gaussian process regression [0.0]
より柔軟なニューロン活性化機能により、より少ない神経細胞や層を使用でき、表現力を向上させることができる。
加算ガウス過程回帰(GPR)は各ニューロンに特異的な最適なニューロン活性化関数を構築するのに有効であることを示す。
ニューラルネットワークパラメータの非線形フィッティングを回避するアプローチも導入されている。
論文 参考訳(メタデータ) (2023-01-13T14:19:17Z) - Spiking neural network for nonlinear regression [68.8204255655161]
スパイクニューラルネットワークは、メモリとエネルギー消費を大幅に削減する可能性を持っている。
彼らは、次世代のニューロモルフィックハードウェアによって活用できる時間的および神経的疎結合を導入する。
スパイキングニューラルネットワークを用いた回帰フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-06T13:04:45Z) - Energy-Efficient High-Accuracy Spiking Neural Network Inference Using
Time-Domain Neurons [0.18352113484137625]
本稿では低出力高線形時間領域I&Fニューロン回路を提案する。
提案されたニューロンは、MNIST推論において4.3倍のエラー率をもたらす。
提案したニューロン回路で消費される電力は1ニューロンあたり0.230uWとシミュレートされ、これは既存の電圧領域ニューロンよりも桁違いに低い。
論文 参考訳(メタデータ) (2022-02-04T08:24:03Z) - Improving Spiking Neural Network Accuracy Using Time-based Neurons [0.24366811507669117]
アナログニューロンを用いた低消費電力スパイクニューラルネットワークに基づくニューロモルフィックコンピューティングシステムの研究が注目されている。
技術のスケールダウンに伴い、アナログニューロンはスケールが難しく、電圧ヘッドルーム/ダイナミックレンジの減少と回路の非線形性に悩まされる。
本稿では,28nmプロセスで設計した既存の電流ミラー型電圧ドメインニューロンの非線形挙動をモデル化し,ニューロンの非線形性の影響によりSNN推定精度を著しく劣化させることができることを示す。
本稿では,時間領域のスパイクを処理し,線形性を大幅に向上させる新しいニューロンを提案する。
論文 参考訳(メタデータ) (2022-01-05T00:24:45Z) - Training Feedback Spiking Neural Networks by Implicit Differentiation on
the Equilibrium State [66.2457134675891]
スパイキングニューラルネットワーク(英: Spiking Neural Network、SNN)は、ニューロモルフィックハードウェア上でエネルギー効率の高い実装を可能にする脳にインスパイアされたモデルである。
既存のほとんどの手法は、人工ニューラルネットワークのバックプロパゲーションフレームワークとフィードフォワードアーキテクチャを模倣している。
本稿では,フォワード計算の正逆性に依存しない新しいトレーニング手法を提案する。
論文 参考訳(メタデータ) (2021-09-29T07:46:54Z) - And/or trade-off in artificial neurons: impact on adversarial robustness [91.3755431537592]
ネットワークに十分な数のOR様ニューロンが存在すると、分類の脆さと敵の攻撃に対する脆弱性が増加する。
そこで我々は,AND様ニューロンを定義し,ネットワーク内での割合を増大させる対策を提案する。
MNISTデータセットによる実験結果から,本手法はさらなる探索の方向として有望であることが示唆された。
論文 参考訳(メタデータ) (2021-02-15T08:19:05Z) - Artificial Neural Variability for Deep Learning: On Overfitting, Noise
Memorization, and Catastrophic Forgetting [135.0863818867184]
人工ニューラルネットワーク(ANV)は、ニューラルネットワークが自然のニューラルネットワークからいくつかの利点を学ぶのに役立つ。
ANVは、トレーニングデータと学習モデルの間の相互情報の暗黙の正則化として機能する。
過度にフィットし、ノイズの記憶をラベル付けし、無視できるコストで破滅的な忘れを効果的に軽減することができる。
論文 参考訳(メタデータ) (2020-11-12T06:06:33Z) - Non-linear Neurons with Human-like Apical Dendrite Activations [81.18416067005538]
XOR論理関数を100%精度で学習し, 標準的なニューロンに後続のアピーカルデンドライト活性化(ADA)が認められた。
コンピュータビジョン,信号処理,自然言語処理の6つのベンチマークデータセットについて実験を行った。
論文 参考訳(メタデータ) (2020-02-02T21:09:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。