MirrorNet: A TEE-Friendly Framework for Secure On-device DNN Inference
- URL: http://arxiv.org/abs/2311.09489v1
- Date: Thu, 16 Nov 2023 01:21:19 GMT
- Title: MirrorNet: A TEE-Friendly Framework for Secure On-device DNN Inference
- Authors: Ziyu Liu, Yukui Luo, Shijin Duan, Tong Zhou, Xiaolin Xu,
- Abstract summary: Deep neural network (DNN) models have become prevalent in edge devices for real-time inference.
Existing defense approaches fail to fully safeguard model confidentiality or result in significant latency issues.
This paper presents MirrorNet, which generates a TEE-friendly implementation for any given DNN model to protect the model confidentiality.
For the evaluation, MirrorNet can achieve a 18.6% accuracy gap between authenticated and illegal use, while only introducing 0.99% hardware overhead.
- Score: 14.08010398777227
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural network (DNN) models have become prevalent in edge devices for real-time inference. However, they are vulnerable to model extraction attacks and require protection. Existing defense approaches either fail to fully safeguard model confidentiality or result in significant latency issues. To overcome these challenges, this paper presents MirrorNet, which leverages Trusted Execution Environment (TEE) to enable secure on-device DNN inference. It generates a TEE-friendly implementation for any given DNN model to protect the model confidentiality, while meeting the stringent computation and storage constraints of TEE. The framework consists of two key components: the backbone model (BackboneNet), which is stored in the normal world but achieves lower inference accuracy, and the Companion Partial Monitor (CPM), a lightweight mirrored branch stored in the secure world, preserving model confidentiality. During inference, the CPM monitors the intermediate results from the BackboneNet and rectifies the classification output to achieve higher accuracy. To enhance flexibility, MirrorNet incorporates two modules: the CPM Strategy Generator, which generates various protection strategies, and the Performance Emulator, which estimates the performance of each strategy and selects the most optimal one. Extensive experiments demonstrate the effectiveness of MirrorNet in providing security guarantees while maintaining low computation latency, making MirrorNet a practical and promising solution for secure on-device DNN inference. For the evaluation, MirrorNet can achieve a 18.6% accuracy gap between authenticated and illegal use, while only introducing 0.99% hardware overhead.
Related papers
- SLIP: Securing LLMs IP Using Weights Decomposition [0.0]
Large language models (LLMs) have recently seen widespread adoption, in both academia and industry.
As these models grow, they become valuable intellectual property (IP), reflecting enormous investments by their owners.
Current methods to protect models' IP on the edge have limitations in terms of practicality, loss in accuracy, or suitability to requirements.
We introduce a novel hybrid inference algorithm, named SLIP, designed to protect edge-deployed models from theft.
arXiv Detail & Related papers (2024-07-15T16:37:55Z) - Digital Twin-Assisted Data-Driven Optimization for Reliable Edge Caching in Wireless Networks [60.54852710216738]
We introduce a novel digital twin-assisted optimization framework, called D-REC, to ensure reliable caching in nextG wireless networks.
By incorporating reliability modules into a constrained decision process, D-REC can adaptively adjust actions, rewards, and states to comply with advantageous constraints.
arXiv Detail & Related papers (2024-06-29T02:40:28Z) - Data-Driven Lipschitz Continuity: A Cost-Effective Approach to Improve Adversarial Robustness [47.9744734181236]
We explore the concept of Lipschitz continuity to certify the robustness of deep neural networks (DNNs) against adversarial attacks.
We propose a novel algorithm that remaps the input domain into a constrained range, reducing the Lipschitz constant and potentially enhancing robustness.
Our method achieves the best robust accuracy for CIFAR10, CIFAR100, and ImageNet datasets on the RobustBench leaderboard.
arXiv Detail & Related papers (2024-06-28T03:10:36Z) - TBNet: A Neural Architectural Defense Framework Facilitating DNN Model Protection in Trusted Execution Environments [14.074570784425225]
This paper presents TBNet, a TEE-based defense framework that protects DNN model from a neural architectural perspective.
Experimental results on a Raspberry Pi across diverse DNN model architectures and datasets demonstrate that TBNet achieves efficient model protection at a low cost.
arXiv Detail & Related papers (2024-05-07T03:08:30Z) - Privacy preserving layer partitioning for Deep Neural Network models [0.21470800327528838]
Trusted Execution Environments (TEEs) can introduce significant performance overhead due to additional layers of encryption, decryption, security and integrity checks.
We introduce layer partitioning technique and offloading computations to GPU.
We conduct experiments to demonstrate the effectiveness of our approach in protecting against input reconstruction attacks developed using trained conditional Generative Adversarial Network(c-GAN)
arXiv Detail & Related papers (2024-04-11T02:39:48Z) - Memory-Efficient and Secure DNN Inference on TrustZone-enabled Consumer IoT Devices [9.928745904761358]
Edge intelligence enables resource-demanding Deep Neural Network (DNN) inference without transferring original data.
For privacy-sensitive applications, deploying models in hardware-isolated trusted execution environments (TEEs) becomes essential.
We present a novel approach for advanced model deployment in TrustZone that ensures comprehensive privacy preservation during model inference.
arXiv Detail & Related papers (2024-03-19T09:22:50Z) - No Privacy Left Outside: On the (In-)Security of TEE-Shielded DNN
Partition for On-Device ML [28.392497220631032]
We show that existing TSDP solutions are vulnerable to privacy-stealing attacks and are not as safe as commonly believed.
We present TEESlice, a novel TSDP method that defends against MS and MIA during DNN inference.
arXiv Detail & Related papers (2023-10-11T02:54:52Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
High-dimension parameter model and large-scale mathematical calculation restrict execution efficiency, especially for Internet of Things (IoT) devices.
We propose a new Deep Reinforcement Learning (DRL)-Soft Actor Critic for discrete (SAC-d), which generates the emphexit point, emphexit point, and emphcompressing bits by soft policy iterations.
Based on the latency and accuracy aware reward design, such an computation can well adapt to the complex environment like dynamic wireless channel and arbitrary processing, and is capable of supporting the 5G URL
arXiv Detail & Related papers (2022-01-09T09:31:50Z) - Uncertainty-Aware Deep Calibrated Salient Object Detection [74.58153220370527]
Existing deep neural network based salient object detection (SOD) methods mainly focus on pursuing high network accuracy.
These methods overlook the gap between network accuracy and prediction confidence, known as the confidence uncalibration problem.
We introduce an uncertaintyaware deep SOD network, and propose two strategies to prevent deep SOD networks from being overconfident.
arXiv Detail & Related papers (2020-12-10T23:28:36Z) - A Privacy-Preserving-Oriented DNN Pruning and Mobile Acceleration
Framework [56.57225686288006]
Weight pruning of deep neural networks (DNNs) has been proposed to satisfy the limited storage and computing capability of mobile edge devices.
Previous pruning methods mainly focus on reducing the model size and/or improving performance without considering the privacy of user data.
We propose a privacy-preserving-oriented pruning and mobile acceleration framework that does not require the private training dataset.
arXiv Detail & Related papers (2020-03-13T23:52:03Z) - CryptoSPN: Privacy-preserving Sum-Product Network Inference [84.88362774693914]
We present a framework for privacy-preserving inference of sum-product networks (SPNs)
CryptoSPN achieves highly efficient and accurate inference in the order of seconds for medium-sized SPNs.
arXiv Detail & Related papers (2020-02-03T14:49:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.