Digital Twin-Assisted Data-Driven Optimization for Reliable Edge Caching in Wireless Networks
- URL: http://arxiv.org/abs/2407.00286v1
- Date: Sat, 29 Jun 2024 02:40:28 GMT
- Title: Digital Twin-Assisted Data-Driven Optimization for Reliable Edge Caching in Wireless Networks
- Authors: Zifan Zhang, Yuchen Liu, Zhiyuan Peng, Mingzhe Chen, Dongkuan Xu, Shuguang Cui,
- Abstract summary: We introduce a novel digital twin-assisted optimization framework, called D-REC, to ensure reliable caching in nextG wireless networks.
By incorporating reliability modules into a constrained decision process, D-REC can adaptively adjust actions, rewards, and states to comply with advantageous constraints.
- Score: 60.54852710216738
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Optimizing edge caching is crucial for the advancement of next-generation (nextG) wireless networks, ensuring high-speed and low-latency services for mobile users. Existing data-driven optimization approaches often lack awareness of the distribution of random data variables and focus solely on optimizing cache hit rates, neglecting potential reliability concerns, such as base station overload and unbalanced cache issues. This oversight can result in system crashes and degraded user experience. To bridge this gap, we introduce a novel digital twin-assisted optimization framework, called D-REC, which integrates reinforcement learning (RL) with diverse intervention modules to ensure reliable caching in nextG wireless networks. We first develop a joint vertical and horizontal twinning approach to efficiently create network digital twins, which are then employed by D-REC as RL optimizers and safeguards, providing ample datasets for training and predictive evaluation of our cache replacement policy. By incorporating reliability modules into a constrained Markov decision process, D-REC can adaptively adjust actions, rewards, and states to comply with advantageous constraints, minimizing the risk of network failures. Theoretical analysis demonstrates comparable convergence rates between D-REC and vanilla data-driven methods without compromising caching performance. Extensive experiments validate that D-REC outperforms conventional approaches in cache hit rate and load balancing while effectively enforcing predetermined reliability intervention modules.
Related papers
- Data-Driven Lipschitz Continuity: A Cost-Effective Approach to Improve Adversarial Robustness [47.9744734181236]
We explore the concept of Lipschitz continuity to certify the robustness of deep neural networks (DNNs) against adversarial attacks.
We propose a novel algorithm that remaps the input domain into a constrained range, reducing the Lipschitz constant and potentially enhancing robustness.
Our method achieves the best robust accuracy for CIFAR10, CIFAR100, and ImageNet datasets on the RobustBench leaderboard.
arXiv Detail & Related papers (2024-06-28T03:10:36Z) - Emergency Caching: Coded Caching-based Reliable Map Transmission in
Emergency Networks [9.423705897088672]
We propose a three-layer architecture of caching networks focusing on data collection and reliable transmission.
We propose a disaster map collection framework that integrates coded caching technologies.
Our proposed scheme is more effective than the non-coding caching scheme, as validated by simulation.
arXiv Detail & Related papers (2024-02-27T14:44:11Z) - Digital Twin-Enhanced Deep Reinforcement Learning for Resource
Management in Networks Slicing [46.65030115953947]
We propose a framework consisting of a digital twin and reinforcement learning agents.
Specifically, we propose to use the historical data and the neural networks to build a digital twin model to simulate the state variation law of the real environment.
We also extend the framework to offline reinforcement learning, where solutions can be used to obtain intelligent decisions based solely on historical data.
arXiv Detail & Related papers (2023-11-28T15:25:14Z) - Confidence Attention and Generalization Enhanced Distillation for
Continuous Video Domain Adaptation [62.458968086881555]
Continuous Video Domain Adaptation (CVDA) is a scenario where a source model is required to adapt to a series of individually available changing target domains.
We propose a Confidence-Attentive network with geneRalization enhanced self-knowledge disTillation (CART) to address the challenge in CVDA.
arXiv Detail & Related papers (2023-03-18T16:40:10Z) - RRNet: Towards ReLU-Reduced Neural Network for Two-party Computation
Based Private Inference [17.299835585861747]
We introduce RRNet, a framework that aims to jointly reduce the overhead of MPC comparison protocols and accelerate computation through hardware acceleration.
Our approach integrates the hardware latency of cryptographic building blocks into the DNN loss function, resulting in improved energy efficiency, accuracy, and security guarantees.
arXiv Detail & Related papers (2023-02-05T04:02:13Z) - Learning towards Synchronous Network Memorizability and Generalizability
for Continual Segmentation across Multiple Sites [52.84959869494459]
In clinical practice, a segmentation network is often required to continually learn on a sequential data stream from multiple sites.
Existing methods are usually restricted in either network memorizability on previous sites or generalizability on unseen sites.
This paper aims to tackle the problem of Synchronous Memorizability and Generalizability with a novel proposed SMG-learning framework.
arXiv Detail & Related papers (2022-06-14T13:04:36Z) - Accelerating Deep Learning Classification with Error-controlled
Approximate-key Caching [72.50506500576746]
We propose a novel caching paradigm, that we named approximate-key caching.
While approximate cache hits alleviate DL inference workload and increase the system throughput, they however introduce an approximation error.
We analytically model our caching system performance for classic LRU and ideal caches, we perform a trace-driven evaluation of the expected performance, and we compare the benefits of our proposed approach with the state-of-the-art similarity caching.
arXiv Detail & Related papers (2021-12-13T13:49:11Z) - Distributed Reinforcement Learning for Privacy-Preserving Dynamic Edge
Caching [91.50631418179331]
A privacy-preserving distributed deep policy gradient (P2D3PG) is proposed to maximize the cache hit rates of devices in the MEC networks.
We convert the distributed optimizations into model-free Markov decision process problems and then introduce a privacy-preserving federated learning method for popularity prediction.
arXiv Detail & Related papers (2021-10-20T02:48:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.