論文の概要: CARE: Extracting Experimental Findings From Clinical Literature
- arxiv url: http://arxiv.org/abs/2311.09736v2
- Date: Wed, 24 Apr 2024 18:15:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-26 23:37:50.371063
- Title: CARE: Extracting Experimental Findings From Clinical Literature
- Title(参考訳): CARE:臨床文献から実験的発見を抽出する
- Authors: Aakanksha Naik, Bailey Kuehl, Erin Bransom, Doug Downey, Tom Hope,
- Abstract要約: 本研究は,臨床所見抽出のための新しいIEデータセットであるCAREを提示する。
我々は,エンティティと属性間のn-ary関係として微細な発見をキャプチャする新しいアノテーションスキーマを開発した。
臨床治験と症例報告の2つの資料から,700件の要約の広範な注釈を収集した。
- 参考スコア(独自算出の注目度): 29.763929941107616
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Extracting fine-grained experimental findings from literature can provide dramatic utility for scientific applications. Prior work has developed annotation schemas and datasets for limited aspects of this problem, failing to capture the real-world complexity and nuance required. Focusing on biomedicine, this work presents CARE -- a new IE dataset for the task of extracting clinical findings. We develop a new annotation schema capturing fine-grained findings as n-ary relations between entities and attributes, which unifies phenomena challenging for current IE systems such as discontinuous entity spans, nested relations, variable arity n-ary relations and numeric results in a single schema. We collect extensive annotations for 700 abstracts from two sources: clinical trials and case reports. We also demonstrate the generalizability of our schema to the computer science and materials science domains. We benchmark state-of-the-art IE systems on CARE, showing that even models such as GPT4 struggle. We release our resources to advance research on extracting and aggregating literature findings.
- Abstract(参考訳): 文学からきめ細かい実験結果を抽出することは、科学的応用に劇的な有用性をもたらすことができる。
それまでの作業では、この問題の限られた側面のためのアノテーションスキーマとデータセットが開発され、現実の複雑さとニュアンスをキャプチャできなかった。
バイオメディシンに焦点を当てたこの研究は、臨床所見を抽出するタスクのための新しいIEデータセットであるCAREを提示する。
本研究では,非連続的なエンティティスパン,ネスト関係,可変arity n-ary関係,数値結果など,現在のIEシステムにおいて困難な現象を統一する,エンティティと属性間のn-ary関係として微細な発見をキャプチャーする新しいアノテーションスキーマを開発した。
臨床治験と症例報告の2つの資料から,700件の抄録を広範囲に収集した。
また,コンピュータ科学・材料科学分野へのスキーマの一般化可能性を示す。
私たちはCAREで最新のIEシステムをベンチマークし、GPT4のようなモデルでさえ苦労していることを示した。
文献を抽出・集約する研究を進めるため、我々の資源を解放する。
関連論文リスト
- SciER: An Entity and Relation Extraction Dataset for Datasets, Methods, and Tasks in Scientific Documents [49.54155332262579]
我々は,科学論文のデータセット,メソッド,タスクに関連するエンティティに対して,新たなエンティティと関係抽出データセットをリリースする。
我々のデータセットには、24k以上のエンティティと12kの関係を持つ106の注釈付きフルテキストの科学出版物が含まれています。
論文 参考訳(メタデータ) (2024-10-28T15:56:49Z) - Decoding MIE: A Novel Dataset Approach Using Topic Extraction and Affiliation Parsing [0.0]
本研究は,医療情報学ヨーロッパ(MIE)会議の手続きから得られた新しいデータセットを紹介する。
我々は,「健康技術・情報学研究」誌の4,606論文からメタデータと要約を抽出し,分析した。
論文 参考訳(メタデータ) (2024-10-06T19:34:23Z) - Dynamic Graph Enhanced Contrastive Learning for Chest X-ray Report
Generation [92.73584302508907]
コントラスト学習を用いた医療レポート作成を支援するために,動的構造とノードを持つ知識グラフを提案する。
詳しくは、グラフの基本構造は一般知識から事前構築される。
各イメージ機能は、レポート生成のためにデコーダモジュールに入力する前に、独自の更新グラフに統合される。
論文 参考訳(メタデータ) (2023-03-18T03:53:43Z) - PcMSP: A Dataset for Scientific Action Graphs Extraction from
Polycrystalline Materials Synthesis Procedure Text [1.9573380763700712]
このデータセットは、実験段落から抽出された合成文と、エンティティの言及と文内関係を同時に含んでいる。
PcMSPコーパスの品質を保証する2段階の人間アノテーションとアノテーション間合意研究を行った。
本稿では,4つの自然言語処理タスクを紹介する。文分類,名前付きエンティティ認識,関係分類,エンティティと関係の合同抽出である。
論文 参考訳(メタデータ) (2022-10-22T09:43:54Z) - ImDrug: A Benchmark for Deep Imbalanced Learning in AI-aided Drug
Discovery [79.08833067391093]
現実世界の医薬品のデータセットは、しばしば高度に不均衡な分布を示す。
ImDrugはオープンソースのPythonライブラリを備えたベンチマークで、4つの不均衡設定、11のAI対応データセット、54の学習タスク、16のベースラインアルゴリズムで構成されています。
ドラッグ発見パイプラインの幅広い範囲にまたがる問題やソリューションに対して、アクセス可能でカスタマイズ可能なテストベッドを提供する。
論文 参考訳(メタデータ) (2022-09-16T13:35:57Z) - EBOCA: Evidences for BiOmedical Concepts Association Ontology [55.41644538483948]
本論文は,生物医学領域の概念とそれらの関連性を記述するオントロジーであるEBOCAと,それらの関連性を支持するエビデンスを提案する。
DISNETのサブセットから得られるテストデータとテキストからの自動アソシエーション抽出が変換され、実際のシナリオで使用できる知識グラフが作成されるようになった。
論文 参考訳(メタデータ) (2022-08-01T18:47:03Z) - Discovering Drug-Target Interaction Knowledge from Biomedical Literature [107.98712673387031]
人体における薬物と標的(DTI)の相互作用は、生物医学や応用において重要な役割を担っている。
毎年何百万もの論文がバイオメディカル分野で出回っているので、文学からDTIの知識を自動的に発見することは、業界にとって急激な需要となっている。
生成的アプローチを用いて,この課題に対する最初のエンドツーエンドソリューションについて検討する。
我々はDTI三重項をシーケンスとみなし、Transformerベースのモデルを使ってエンティティや関係の詳細なアノテーションを使わずに直接生成する。
論文 参考訳(メタデータ) (2021-09-27T17:00:14Z) - CREATe: Clinical Report Extraction and Annotation Technology [53.731999072534876]
臨床症例報告は、特定の臨床症例の特異な側面を記述した記述である。
これらのレポートを注釈付け、インデックス付け、あるいはキュレートするエンドツーエンドシステムを開発する試みはない。
本稿では,新たな計算資源プラットフォームを提案し,臨床事例レポートの内容の抽出,索引付け,照会を行う。
論文 参考訳(メタデータ) (2021-02-28T16:50:14Z) - Self-Supervised Learning for Visual Summary Identification in Scientific
Publications [21.26121265868308]
要約に基づいて、出版物の視覚的な要約として機能する数字を選択するための新しいベンチマークデータセットを作成します。
図形キャプション付き図形へのインライン参照のマッチングに基づいて,自己教師付き学習手法を開発する。
生物医学およびコンピュータ科学の分野の実験は私達のモデルが芸術の状態を上回ることができることを示します。
論文 参考訳(メタデータ) (2020-12-21T09:48:58Z) - The SOFC-Exp Corpus and Neural Approaches to Information Extraction in
the Materials Science Domain [11.085048329202335]
我々は, 固体酸化物燃料電池に関する実験に関する情報を, 科学的出版物にマーキングするためのアノテーション・スキームを開発した。
コーパスとアノテーション間の合意研究は、提案されたエンティティ認識の複雑さを実証する。
我々は、新しいデータセットに基づいて対処できる様々なタスクに対して、強力なニューラルネットワークベースのモデルを提示します。
論文 参考訳(メタデータ) (2020-06-04T17:49:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。