Model Checking for Closed-Loop Robot Reactive Planning
- URL: http://arxiv.org/abs/2311.09780v1
- Date: Thu, 16 Nov 2023 11:02:29 GMT
- Title: Model Checking for Closed-Loop Robot Reactive Planning
- Authors: Christopher Chandler (School of Computing Science, University of
Glasgow), Bernd Porr (School of Biomedical Engineering, University of
Glasgow), Alice Miller (School of Computing Science, University of Glasgow),
Giulia Lafratta (School of Engineering, University of Glasgow)
- Abstract summary: We show how model checking can be used to create multistep plans for a differential drive wheeled robot so that it can avoid immediate danger.
Using a small, purpose built model checking algorithm in situ we generate plans in real-time in a way that reflects the egocentric reactive response of simple biological agents.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we show how model checking can be used to create multi-step
plans for a differential drive wheeled robot so that it can avoid immediate
danger. Using a small, purpose built model checking algorithm in situ we
generate plans in real-time in a way that reflects the egocentric reactive
response of simple biological agents. Our approach is based on chaining
temporary control systems which are spawned to eliminate disturbances in the
local environment that disrupt an autonomous agent from its preferred action
(or resting state). The method involves a novel discretization of 2D LiDAR data
which is sensitive to bounded stochastic variations in the immediate
environment. We operationalise multi-step planning using invariant checking by
forward depth-first search, using a cul-de-sac scenario as a first test case.
Our results demonstrate that model checking can be used to plan efficient
trajectories for local obstacle avoidance, improving on the performance of a
reactive agent which can only plan one step. We achieve this in near real-time
using no pre-computed data. While our method has limitations, we believe our
approach shows promise as an avenue for the development of safe, reliable and
transparent trajectory planning in the context of autonomous vehicles.
Related papers
- Building Real-time Awareness of Out-of-distribution in Trajectory Prediction for Autonomous Vehicles [8.398221841050349]
Trajectory prediction describes the motions of surrounding moving obstacles for an autonomous vehicle.
In this paper, we aim to establish real-time awareness of out-of-distribution in trajectory prediction for autonomous vehicles.
Our solutions are lightweight and can handle the occurrence of out-of-distribution at any time during trajectory prediction inference.
arXiv Detail & Related papers (2024-09-25T18:43:58Z) - Real-Time Anomaly Detection and Reactive Planning with Large Language Models [18.57162998677491]
Foundation models, e.g., large language models (LLMs), trained on internet-scale data possess zero-shot capabilities.
We present a two-stage reasoning framework that incorporates the judgement regarding potential anomalies into a safe control framework.
This enables our monitor to improve the trustworthiness of dynamic robotic systems, such as quadrotors or autonomous vehicles.
arXiv Detail & Related papers (2024-07-11T17:59:22Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - Active Uncertainty Reduction for Safe and Efficient Interaction
Planning: A Shielding-Aware Dual Control Approach [9.07774184840379]
We present a novel algorithmic approach to enable active uncertainty reduction for interactive motion planning based on the implicit dual control paradigm.
Our approach relies on sampling-based approximation of dynamic programming, leading to a model predictive control problem that can be readily solved by real-time gradient-based optimization methods.
arXiv Detail & Related papers (2023-02-01T01:34:48Z) - Semi-Supervised Temporal Action Detection with Proposal-Free Masking [134.26292288193298]
We propose a novel Semi-supervised Temporal action detection model based on PropOsal-free Temporal mask (SPOT)
SPOT outperforms state-of-the-art alternatives, often by a large margin.
arXiv Detail & Related papers (2022-07-14T16:58:47Z) - Trajectory Forecasting from Detection with Uncertainty-Aware Motion
Encoding [121.66374635092097]
Trajectories obtained from object detection and tracking are inevitably noisy.
We propose a trajectory predictor directly based on detection results without relying on explicitly formed trajectories.
arXiv Detail & Related papers (2022-02-03T09:09:56Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
We present an end-to-end online motion planning framework that uses a data-driven approach to navigate a heterogeneous robot team towards a global goal.
We use model predictive control (SMPC) to calculate control inputs that satisfy robot dynamics, and consider uncertainty during obstacle avoidance with chance constraints.
recurrent neural networks are used to provide a quick estimate of future state uncertainty considered in the SMPC finite-time horizon solution.
A Deep Q-learning agent is employed to serve as a high-level path planner, providing the SMPC with target positions that move the robots towards a desired global goal.
arXiv Detail & Related papers (2021-08-03T02:56:21Z) - Model Error Propagation via Learned Contraction Metrics for Safe
Feedback Motion Planning of Unknown Systems [4.702729080310267]
We present a method for contraction-based feedback motion planning of locally incrementally stabilizable systems with unknown dynamics.
Given a dynamics dataset, our method learns a deep control-affine approximation of the dynamics.
We show results on a 4D car, a 6D quadrotor, and a 22D deformable object manipulation task, showing our method plans safely with learned models of high-dimensional underactuated systems.
arXiv Detail & Related papers (2021-04-18T03:34:00Z) - Discovering Avoidable Planner Failures of Autonomous Vehicles using
Counterfactual Analysis in Behaviorally Diverse Simulation [16.86782673205523]
We introduce a planner testing framework that leverages recent progress in simulating behaviorally diverse traffic participants.
We show that our method can indeed find a wide range of critical planner failures.
arXiv Detail & Related papers (2020-11-24T09:44:23Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
We propose an online path planning architecture that extends the model predictive control (MPC) formulation to consider future location uncertainties.
Our algorithm combines an object detection pipeline with a recurrent neural network (RNN) which infers the covariance of state estimates.
The robustness of our methods is validated on complex quadruped robot dynamics and can be generally applied to most robotic platforms.
arXiv Detail & Related papers (2020-07-28T07:34:30Z) - Guided Uncertainty-Aware Policy Optimization: Combining Learning and
Model-Based Strategies for Sample-Efficient Policy Learning [75.56839075060819]
Traditional robotic approaches rely on an accurate model of the environment, a detailed description of how to perform the task, and a robust perception system to keep track of the current state.
reinforcement learning approaches can operate directly from raw sensory inputs with only a reward signal to describe the task, but are extremely sample-inefficient and brittle.
In this work, we combine the strengths of model-based methods with the flexibility of learning-based methods to obtain a general method that is able to overcome inaccuracies in the robotics perception/actuation pipeline.
arXiv Detail & Related papers (2020-05-21T19:47:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.