論文の概要: More Samples or More Prompt Inputs? Exploring Effective In-Context
Sampling for LLM Few-Shot Prompt Engineering
- arxiv url: http://arxiv.org/abs/2311.09782v1
- Date: Thu, 16 Nov 2023 11:02:49 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-17 14:57:57.794779
- Title: More Samples or More Prompt Inputs? Exploring Effective In-Context
Sampling for LLM Few-Shot Prompt Engineering
- Title(参考訳): より多くのサンプルか、もっとプロンプト入力か?
LLMFew-Shot Prompt Engineeringのための効果的なインコンテキストサンプリングの探索
- Authors: Bingsheng Yao, Guiming Chen, Ruishi Zou, Yuxuan Lu, Jiachen Li, Shao
Zhang, Sijia Liu, James Hendler, Dakuo Wang
- Abstract要約: In-Context Smpling (ICS) を提案し、複数のICLプロンプト入力の構成を最適化することにより、最も確実な予測結果を生成する。
アブレーション研究は、多様性に基づくICS戦略がLCMの性能をさらに向上させる可能性を示唆している。
- 参考スコア(独自算出の注目度): 34.767637344329835
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While most existing works on LLM prompt-engineering focus only on how to
select a better set of data samples inside one single prompt input (In-Context
Learning or ICL), why can't we design and leverage multiple prompt inputs
together to further improve the LLM performance? In this work, we propose
In-Context Sampling (ICS), a low-resource LLM prompt-engineering technique to
produce the most confident prediction results by optimizing the construction of
multiple ICL prompt inputs. Extensive experiments with two SOTA LLMs (FlanT5-XL
and Mistral-7B) on three NLI datasets (e-SNLI, Multi-NLI, and ANLI) illustrate
that ICS can consistently enhance LLM's prediction performance and confidence.
An ablation study suggests that a diversity-based ICS strategy may further
improve LLM's performance, which sheds light on a new yet promising future
research direction.
- Abstract(参考訳): LLMのプロンプトエンジニアリングは、単一のプロンプトインプット(In-Context Learning や ICL)の中で、より優れたデータサンプルを選択する方法のみに焦点を当てていますが、複数のプロンプトインプットを一緒に設計し、活用してLLMのパフォーマンスをさらに向上させることはできないでしょうか?
In-Context Smpling (ICS) は低リソースのLCMプロンプトエンジニアリング技術であり、複数のICLプロンプト入力を最適化することにより最も確実な予測結果を生成する。
2つのSOTA LLM(FlanT5-XLとMistral-7B)による3つのNLIデータセット(e-SNLI、Multi-NLI、ANLI)による大規模な実験により、ICSはLLMの予測性能と信頼性を一貫して向上できることが示された。
アブレーション研究では、多様性に基づくICS戦略により、LCMのパフォーマンスがさらに向上し、将来有望な新たな研究方向性に光を当てることが示唆されている。
関連論文リスト
- In-Context Learning with Reinforcement Learning for Incomplete Utterance Rewriting [33.89176174108559]
大規模言語モデル(LLM)の文脈内学習は、いくつかの例で拡張された命令に基づいて予測を行う。
ICLの既存の例選択方法はスパースまたは高密度レトリバーを使用し、有効性能を導出する。
本稿では,言語モデルセレクタとLLMジェネレータから構成される実例選択(RLS)のためのポリシーベース強化学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-23T12:32:12Z) - SelectLLM: Query-Aware Efficient Selection Algorithm for Large Language Models [8.558834738072363]
大規模言語モデル(LLM)は、様々なタスクで顕著な成功を収めたため、人気が高まっている。
しかしながら、個々のLLMは、トレーニングバイアス、モデルサイズ、使用されるデータセットなどの要因のために、複雑なタスクに適用する場合に制限がある。
本稿では,入力クエリを大規模プールからLLMの最も適切なサブセットに誘導する新しいアルゴリズムであるSelectLLMを紹介する。
論文 参考訳(メタデータ) (2024-08-16T06:11:21Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - LLMBox: A Comprehensive Library for Large Language Models [109.15654830320553]
本稿では,大規模言語モデル (LLM) の開発, 使用, 評価を容易にするために, 包括的で統一されたライブラリ LLMBox を提案する。
このライブラリには,(1)多様なトレーニング戦略の柔軟な実装を支援する統一データインターフェース,(2)広範囲なタスクやデータセット,モデルをカバーする包括的な評価,(3)ユーザフレンドリさや効率性など,より実践的な考慮,という3つのメリットがある。
論文 参考訳(メタデータ) (2024-07-08T02:39:33Z) - Efficient Prompting for LLM-based Generative Internet of Things [88.84327500311464]
大規模言語モデル(LLM)は、様々なタスクにおいて顕著な能力を示しており、最近、IoT(Internet of Things)アプリケーションにLLMの能力を統合することが研究の注目を集めている。
セキュリティ上の懸念から、多くの機関は最先端の商用LLMサービスへのアクセスを避け、ローカルネットワーク環境でのオープンソースLLMのデプロイと利用を必要としている。
本研究では,LLMを用いた生成IoT(Generative IoT)システムを提案する。
論文 参考訳(メタデータ) (2024-06-14T19:24:00Z) - A Practice-Friendly LLM-Enhanced Paradigm with Preference Parsing for Sequential Recommendation [15.153844486572932]
本稿では、シーケンシャルレコメンデータシステム(SRS)のための優先構文解析(P2Rec)を用いた実践的LLM拡張パラダイムを提案する。
具体的には、情報再構成段階において、事前学習したSRSモデルの助けを借りて、協調的な情報注入のための新しいユーザレベルSFTタスクを設計する。
我々のゴールは、LLMが各ユーザのインタラクションシーケンスから対応する優先度分布を再構築することを学ばせることである。
論文 参考訳(メタデータ) (2024-06-01T07:18:56Z) - Parrot: Efficient Serving of LLM-based Applications with Semantic Variable [11.894203842968745]
Parrotは、LLMベースのアプリケーションのエンドツーエンドエクスペリエンスに焦点を当てたサービスシステムである。
Semantic Variableはリクエストのプロンプトで入出力変数に注釈を付け、複数のLLMリクエストを接続する際にデータパイプラインを生成する。
論文 参考訳(メタデータ) (2024-05-30T09:46:36Z) - Automated Commit Message Generation with Large Language Models: An Empirical Study and Beyond [24.151927600694066]
コミットメッセージ生成(CMG)アプローチは、与えられたコード差分に基づいてコミットメッセージを自動的に生成することを目的としている。
本稿では,Large Language Models (LLMs) を用いて高品質なコミットメッセージの生成にどの程度の期間を費やしてきたかを調べるための,最初の包括的な実験を行う。
論文 参考訳(メタデータ) (2024-04-23T08:24:43Z) - Optimizing LLM Queries in Relational Workloads [58.254894049950366]
本稿では,LLMをリレーショナルクエリ内で実行する解析処理に対して,LLM(Large Language Models)推論を最適化する方法を示す。
私たちはこれらの最適化をApache Sparkで実装し、vLLMをバックエンドとして提供しています。
実データセット上の多様なLLMベースのクエリのベンチマークで、エンドツーエンドのレイテンシを最大4.4倍改善する。
論文 参考訳(メタデータ) (2024-03-09T07:01:44Z) - FederatedScope-LLM: A Comprehensive Package for Fine-tuning Large
Language Models in Federated Learning [70.38817963253034]
本稿では, ファインチューニング LLM のこれらの課題について論じ, 本パッケージ FS-LLM を主な貢献として紹介する。
我々は、FLシナリオにおける将来の拡張のために、包括的フェデレーションパラメータ効率の良い微調整アルゴリズムの実装と汎用プログラミングインタフェースを提供する。
本研究では, FS-LLM の有効性を検証し, FL 設定におけるパラメータ効率の高いパラメータ調整アルゴリズムを用いて, 高度な LLM のベンチマークを行う。
論文 参考訳(メタデータ) (2023-09-01T09:40:36Z) - ICL-D3IE: In-Context Learning with Diverse Demonstrations Updating for
Document Information Extraction [56.790794611002106]
大規模言語モデル(LLM)は、様々な自然言語処理(NLP)タスクにおいて、文脈内学習による顕著な結果を示している。
ICL-D3IEと呼ばれるシンプルだが効果的なテキスト内学習フレームワークを提案する。
具体的には、ハードトレーニング文書から最も困難で独特なセグメントをハードデモとして抽出する。
論文 参考訳(メタデータ) (2023-03-09T06:24:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。