論文の概要: OptiSeq: Ordering Examples On-The-Fly for In-Context Learning
- arxiv url: http://arxiv.org/abs/2501.15030v2
- Date: Tue, 18 Feb 2025 19:00:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-20 13:57:36.760959
- Title: OptiSeq: Ordering Examples On-The-Fly for In-Context Learning
- Title(参考訳): OptiSeq: インコンテキスト学習のためのオンザフライの注文例
- Authors: Rahul Atul Bhope, Praveen Venkateswaran, K. R. Jayaram, Vatche Isahagian, Vinod Muthusamy, Nalini Venkatasubramanian,
- Abstract要約: OptiSeqは、最適なサンプル順序を効率的に決定する、純粋に推論時間、データセットなしの最適化手法である。
OptiSeqは複数のタスクで5.5~10.5ポイントの精度向上を実現している。
- 参考スコア(独自算出の注目度): 8.603219414567084
- License:
- Abstract: Developers using LLMs and LLM-based agents in their applications have provided plenty of anecdotal evidence that in-context-learning (ICL) is fragile. In this paper, we show that in addition to the quantity and quality of examples, the order in which the in-context examples are listed in the prompt affects the output of the LLM and, consequently, their performance. While prior work has explored improving ICL through dataset-dependent techniques, we introduce OptiSeq, a purely inference-time, dataset-free optimization method that efficiently determines the best example order. OptiSeq leverages log probabilities of LLM-generated outputs to systematically prune the search space of possible orderings and recommend the best order(s) by distinguishing orderings that yield high levels of accuracy and those that underperform. Extensive empirical evaluation on multiple LLMs, datasets, and prompts demonstrate that OptiSeq improves accuracy by 5.5 - 10.5 percentage points across multiple tasks.
- Abstract(参考訳): LLMとLLMベースのエージェントをアプリケーションで使用している開発者は、インコンテキスト学習(ICL)が脆弱であるという逸話的な証拠を数多く提供してきた。
本稿では,実例の量と品質に加えて,実例を即時リストする順序がLLMの出力に影響を与え,その結果,その性能に影響を及ぼすことを示す。
従来の研究では、データセットに依存した手法によるICLの改善が検討されているが、OptiSeqは、純粋に推論時間で、データセットなしの最適化手法で、最適なサンプルオーダーを効率的に決定する。
OptiSeq は LLM 生成した出力のログ確率を利用して、可能な順序付けの探索空間を体系的に訓練し、高いレベルの精度と性能の低い順序付けを区別することで最適な順序付けを推奨する。
複数のLSM、データセット、プロンプトに対する大規模な実験的な評価は、OptiSeqが複数のタスクで5.5~10.5ポイントの精度を向上させることを示した。
関連論文リスト
- The Unreasonable Effectiveness of LLMs for Query Optimization [4.50924404547119]
クエリテキストの埋め込みには,クエリ最適化に有用な意味情報が含まれていることを示す。
少数の組込みクエリベクタで訓練された代替クエリプラン間の単純なバイナリが既存のシステムより優れていることを示す。
論文 参考訳(メタデータ) (2024-11-05T07:10:00Z) - LLM-based Optimization of Compound AI Systems: A Survey [64.39860384538338]
複合AIシステムでは、LLMコール、レトリバー、コードインタプリタ、ツールなどのコンポーネントが相互接続される。
近年の進歩により, LLM を用いたパラメータのエンドツーエンド最適化が可能となった。
本稿では,複合AIシステムのLCMに基づく最適化の原理と動向について述べる。
論文 参考訳(メタデータ) (2024-10-21T18:06:25Z) - In-Context Learning with Reinforcement Learning for Incomplete Utterance Rewriting [33.89176174108559]
大規模言語モデル(LLM)の文脈内学習は、いくつかの例で拡張された命令に基づいて予測を行う。
ICLの既存の例選択方法はスパースまたは高密度レトリバーを使用し、有効性能を導出する。
本稿では,言語モデルセレクタとLLMジェネレータから構成される実例選択(RLS)のためのポリシーベース強化学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-23T12:32:12Z) - SelectLLM: Query-Aware Efficient Selection Algorithm for Large Language Models [8.558834738072363]
大規模言語モデル(LLM)は、様々なアプリケーションで顕著なパフォーマンスのために広く採用されている。
これらの個々のLCMは、固有のトレーニングバイアス、モデルサイズ制約、トレーニング前のデータセットの品質や多様性による、複雑なタスクの一般化とパフォーマンスの制限を示す。
本稿では,入力クエリをLLMの最も適切なサブセットに効率的に誘導するSelectLLMを紹介する。
論文 参考訳(メタデータ) (2024-08-16T06:11:21Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - Is In-Context Learning Sufficient for Instruction Following in LLMs? [38.29072578390376]
実効性はあるものの, MT-Bench の命令微調整と比較すると, ICL とAL とのアライメントは依然として不十分であることがわかった。
我々は、我々の知識、ICLの体系的比較、低データ体制における命令追従のための命令微調整(IFT)を初めて提供する。
論文 参考訳(メタデータ) (2024-05-30T09:28:56Z) - Prompt Optimization with EASE? Efficient Ordering-aware Automated Selection of Exemplars [66.823588073584]
大規模言語モデル(LLM)は、現実世界のアプリケーションで印象的な機能を示している。
これらの卓越した作品の品質は、パフォーマンスに大きな影響を与えます。
既存の方法は、先行注文がパフォーマンスに与える影響を適切に説明できない。
論文 参考訳(メタデータ) (2024-05-25T08:23:05Z) - More Samples or More Prompts? Exploring Effective In-Context Sampling for LLM Few-Shot Prompt Engineering [35.086135550672864]
In-Context Smpling (ICS) を提案し、複数のICLプロンプト入力の構成を最適化し、確実な予測を行う。
3つのデータ類似性に基づくICS戦略による詳細な評価は、これらの戦略がLLMの性能をさらに高める可能性があることを示唆している。
論文 参考訳(メタデータ) (2023-11-16T11:02:49Z) - FederatedScope-LLM: A Comprehensive Package for Fine-tuning Large
Language Models in Federated Learning [70.38817963253034]
本稿では, ファインチューニング LLM のこれらの課題について論じ, 本パッケージ FS-LLM を主な貢献として紹介する。
我々は、FLシナリオにおける将来の拡張のために、包括的フェデレーションパラメータ効率の良い微調整アルゴリズムの実装と汎用プログラミングインタフェースを提供する。
本研究では, FS-LLM の有効性を検証し, FL 設定におけるパラメータ効率の高いパラメータ調整アルゴリズムを用いて, 高度な LLM のベンチマークを行う。
論文 参考訳(メタデータ) (2023-09-01T09:40:36Z) - LLMRec: Benchmarking Large Language Models on Recommendation Task [54.48899723591296]
推奨領域におけるLarge Language Models (LLMs) の適用について, 十分に検討されていない。
我々は、評価予測、シーケンシャルレコメンデーション、直接レコメンデーション、説明生成、レビュー要約を含む5つのレコメンデーションタスクにおいて、市販のLLMをベンチマークする。
ベンチマークの結果,LLMは逐次的・直接的推薦といった精度に基づくタスクにおいて適度な熟練度しか示さないことがわかった。
論文 参考訳(メタデータ) (2023-08-23T16:32:54Z) - From Quantity to Quality: Boosting LLM Performance with Self-Guided Data Selection for Instruction Tuning [52.257422715393574]
本稿では,Large Language Models (LLMs) の自己誘導手法を導入し,オープンソースデータセットからサクラサンプルを自動識別し,選択する。
我々の重要な革新である命令追従困難度(IFD)メトリックは、モデルが期待する応答と本質的な生成能力の相違を識別するための重要な指標として現れます。
論文 参考訳(メタデータ) (2023-08-23T09:45:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。