論文の概要: More Samples or More Prompts? Exploring Effective In-Context Sampling for LLM Few-Shot Prompt Engineering
- arxiv url: http://arxiv.org/abs/2311.09782v2
- Date: Tue, 2 Apr 2024 17:16:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 12:23:14.891076
- Title: More Samples or More Prompts? Exploring Effective In-Context Sampling for LLM Few-Shot Prompt Engineering
- Title(参考訳): サンプル数やプロンプト数の増加 : LLMFew-Shot Prompt Engineeringのための効果的なインコンテキストサンプリング
- Authors: Bingsheng Yao, Guiming Chen, Ruishi Zou, Yuxuan Lu, Jiachen Li, Shao Zhang, Yisi Sang, Sijia Liu, James Hendler, Dakuo Wang,
- Abstract要約: In-Context Smpling (ICS) を提案し、複数のICLプロンプト入力の構成を最適化し、確実な予測を行う。
3つのデータ類似性に基づくICS戦略による詳細な評価は、これらの戦略がLLMの性能をさらに高める可能性があることを示唆している。
- 参考スコア(独自算出の注目度): 35.086135550672864
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While most existing works on LLM prompting techniques focus only on how to select a better set of data samples inside one single prompt input (In-Context Learning or ICL), why can not we design and leverage multiple prompts together to further improve the LLM's performance? In this work, we propose In-Context Sampling (ICS), a low-resource LLM prompting technique to produce confident predictions by optimizing the construction of multiple ICL prompt inputs. Extensive experiments with three open-source LLMs (FlanT5-XL, Mistral-7B, and Mixtral-8x7B) on four NLI datasets (e-SNLI, Multi-NLI, ANLI, and Contract-NLI) and one QA dataset (CommonsenseQA) illustrate that ICS can consistently enhance LLMs' performance. An in-depth evaluation with three data similarity-based ICS strategies suggests that these strategies can further elevate LLM's performance, which sheds light on a new yet promising future research direction.
- Abstract(参考訳): LLMプロンプト技術に関する既存の作業の多くは、1つのプロンプトインプット(In-Context Learning や ICL)の中で、より良いデータサンプルを選択する方法のみに焦点を当てていますが、LLMのパフォーマンスをさらに向上するために、複数のプロンプトを一緒に設計して活用できないのでしょうか?
In-Context Smpling (ICS) は、複数のICLプロンプトインプットの構築を最適化し、信頼性の高い予測を生成するための低リソースLCMプロンプト技術である。
4つのNLIデータセット(e-SNLI、Multi-NLI、ANLI、Contract-NLI)と1つのQAデータセット(CommonsenseQA)の3つのオープンソースLLM(FlanT5-XL、Mistral-7B、Mixtral-8x7B)による大規模な実験は、ICSがLLMのパフォーマンスを継続的に向上できることを示している。
3つのデータ類似性に基づくICS戦略による詳細な評価は、これらの戦略がLSMの性能をさらに高める可能性があることを示唆している。
関連論文リスト
- SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - LLMBox: A Comprehensive Library for Large Language Models [109.15654830320553]
本稿では,大規模言語モデル (LLM) の開発, 使用, 評価を容易にするために, 包括的で統一されたライブラリ LLMBox を提案する。
このライブラリには,(1)多様なトレーニング戦略の柔軟な実装を支援する統一データインターフェース,(2)広範囲なタスクやデータセット,モデルをカバーする包括的な評価,(3)ユーザフレンドリさや効率性など,より実践的な考慮,という3つのメリットがある。
論文 参考訳(メタデータ) (2024-07-08T02:39:33Z) - Efficient Prompting for LLM-based Generative Internet of Things [88.84327500311464]
大規模言語モデル(LLM)は、様々なタスクにおいて顕著な能力を示す。
本稿では,テキストベースの生成IoT(GIoT)システムを提案する。
論文 参考訳(メタデータ) (2024-06-14T19:24:00Z) - Parrot: Efficient Serving of LLM-based Applications with Semantic Variable [11.894203842968745]
Parrotは、LLMベースのアプリケーションのエンドツーエンドエクスペリエンスに焦点を当てたサービスシステムである。
Semantic Variableはリクエストのプロンプトで入出力変数に注釈を付け、複数のLLMリクエストを接続する際にデータパイプラインを生成する。
論文 参考訳(メタデータ) (2024-05-30T09:46:36Z) - Automated Commit Message Generation with Large Language Models: An Empirical Study and Beyond [24.151927600694066]
コミットメッセージ生成(CMG)アプローチは、与えられたコード差分に基づいてコミットメッセージを自動的に生成することを目的としている。
本稿では,Large Language Models (LLMs) を用いて高品質なコミットメッセージの生成にどの程度の期間を費やしてきたかを調べるための,最初の包括的な実験を行う。
論文 参考訳(メタデータ) (2024-04-23T08:24:43Z) - Optimizing LLM Queries in Relational Workloads [58.254894049950366]
本稿では,LLMをリレーショナルクエリ内で実行する解析処理に対して,LLM(Large Language Models)推論を最適化する方法を示す。
私たちはこれらの最適化をApache Sparkで実装し、vLLMをバックエンドとして提供しています。
実データセット上の多様なLLMベースのクエリのベンチマークで、エンドツーエンドのレイテンシを最大4.4倍改善する。
論文 参考訳(メタデータ) (2024-03-09T07:01:44Z) - OPDAI at SemEval-2024 Task 6: Small LLMs can Accelerate Hallucination
Detection with Weakly Supervised Data [1.3981625092173873]
本稿では,LLMの幻覚検出システムについて述べる。
SemEval-2024 Task 6のモデル非依存トラックで2位を獲得した。
論文 参考訳(メタデータ) (2024-02-20T11:01:39Z) - Towards LLM-based Fact Verification on News Claims with a Hierarchical
Step-by-Step Prompting Method [9.099277246096861]
本稿では,大規模事前学習型言語モデル (LLM) とコンテキスト内学習 (ICL) を併用して,ニュースクレームの検証を行う。
階層的なステップ・バイ・ステップ(HiSS)のプロンプト手法を導入し,LLMに対して複数のサブ文を分割し,複数の問合せを段階的に検証する手法を提案する。
2つの公開誤報データセットの実験結果から、HiSSのプロンプトは最先端の完全教師付きアプローチと強力な数発のICL対応ベースラインを上回っていることが示された。
論文 参考訳(メタデータ) (2023-09-30T08:33:04Z) - FederatedScope-LLM: A Comprehensive Package for Fine-tuning Large
Language Models in Federated Learning [70.38817963253034]
本稿では, ファインチューニング LLM のこれらの課題について論じ, 本パッケージ FS-LLM を主な貢献として紹介する。
我々は、FLシナリオにおける将来の拡張のために、包括的フェデレーションパラメータ効率の良い微調整アルゴリズムの実装と汎用プログラミングインタフェースを提供する。
本研究では, FS-LLM の有効性を検証し, FL 設定におけるパラメータ効率の高いパラメータ調整アルゴリズムを用いて, 高度な LLM のベンチマークを行う。
論文 参考訳(メタデータ) (2023-09-01T09:40:36Z) - ICL-D3IE: In-Context Learning with Diverse Demonstrations Updating for
Document Information Extraction [56.790794611002106]
大規模言語モデル(LLM)は、様々な自然言語処理(NLP)タスクにおいて、文脈内学習による顕著な結果を示している。
ICL-D3IEと呼ばれるシンプルだが効果的なテキスト内学習フレームワークを提案する。
具体的には、ハードトレーニング文書から最も困難で独特なセグメントをハードデモとして抽出する。
論文 参考訳(メタデータ) (2023-03-09T06:24:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。