EvaSurf: Efficient View-Aware Implicit Textured Surface Reconstruction on Mobile Devices
- URL: http://arxiv.org/abs/2311.09806v3
- Date: Sat, 20 Jul 2024 02:28:09 GMT
- Title: EvaSurf: Efficient View-Aware Implicit Textured Surface Reconstruction on Mobile Devices
- Authors: Jingnan Gao, Zhuo Chen, Yichao Yan, Bowen Pan, Zhe Wang, Jiangjing Lyu, Xiaokang Yang,
- Abstract summary: We present an implicit textured $textbfSurf$ace reconstruction method on mobile devices.
Our method can reconstruct high-quality appearance and accurate mesh on both synthetic and real-world datasets.
Our method can be trained in just 1-2 hours using a single GPU and run on mobile devices at over 40 FPS (Frames Per Second)
- Score: 53.28220984270622
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reconstructing real-world 3D objects has numerous applications in computer vision, such as virtual reality, video games, and animations. Ideally, 3D reconstruction methods should generate high-fidelity results with 3D consistency in real-time. Traditional methods match pixels between images using photo-consistency constraints or learned features, while differentiable rendering methods like Neural Radiance Fields (NeRF) use differentiable volume rendering or surface-based representation to generate high-fidelity scenes. However, these methods require excessive runtime for rendering, making them impractical for daily applications. To address these challenges, we present $\textbf{EvaSurf}$, an $\textbf{E}$fficient $\textbf{V}$iew-$\textbf{A}$ware implicit textured $\textbf{Surf}$ace reconstruction method on mobile devices. In our method, we first employ an efficient surface-based model with a multi-view supervision module to ensure accurate mesh reconstruction. To enable high-fidelity rendering, we learn an implicit texture embedded with a set of Gaussian lobes to capture view-dependent information. Furthermore, with the explicit geometry and the implicit texture, we can employ a lightweight neural shader to reduce the expense of computation and further support real-time rendering on common mobile devices. Extensive experiments demonstrate that our method can reconstruct high-quality appearance and accurate mesh on both synthetic and real-world datasets. Moreover, our method can be trained in just 1-2 hours using a single GPU and run on mobile devices at over 40 FPS (Frames Per Second), with a final package required for rendering taking up only 40-50 MB.
Related papers
- FaceFolds: Meshed Radiance Manifolds for Efficient Volumetric Rendering of Dynamic Faces [21.946327323788275]
3D rendering of dynamic face is a challenging problem.
We present a novel representation that enables high-quality rendering of an actor's dynamic facial performances.
arXiv Detail & Related papers (2024-04-22T00:44:13Z) - SMERF: Streamable Memory Efficient Radiance Fields for Real-Time Large-Scene Exploration [32.90257853118381]
We introduce SMERF, a view synthesis approach that achieves state-of-the-art accuracy among real-time methods on large scenes.
Our approach enables full six degrees of freedom (6DOF) within a web browser and renders in real-time on commodity smartphones and laptops.
arXiv Detail & Related papers (2023-12-12T18:59:40Z) - HybridNeRF: Efficient Neural Rendering via Adaptive Volumetric Surfaces [71.1071688018433]
Neural radiance fields provide state-of-the-art view synthesis quality but tend to be slow to render.
We propose a method, HybridNeRF, that leverages the strengths of both representations by rendering most objects as surfaces.
We improve error rates by 15-30% while achieving real-time framerates (at least 36 FPS) for virtual-reality resolutions (2Kx2K)
arXiv Detail & Related papers (2023-12-05T22:04:49Z) - FLARE: Fast Learning of Animatable and Relightable Mesh Avatars [64.48254296523977]
Our goal is to efficiently learn personalized animatable 3D head avatars from videos that are geometrically accurate, realistic, relightable, and compatible with current rendering systems.
We introduce FLARE, a technique that enables the creation of animatable and relightable avatars from a single monocular video.
arXiv Detail & Related papers (2023-10-26T16:13:00Z) - Flexible Techniques for Differentiable Rendering with 3D Gaussians [29.602516169951556]
Neural Radiance Fields demonstrated photorealistic novel view is within reach, but was gated by performance requirements for fast reconstruction of real scenes and objects.
We develop extensions to alternative shape representations, in particular, 3D watertight meshes and rendering per-ray normals.
These reconstructions are quick, robust, and easily performed on GPU or CPU.
arXiv Detail & Related papers (2023-08-28T17:38:31Z) - Differentiable Blocks World: Qualitative 3D Decomposition by Rendering
Primitives [70.32817882783608]
We present an approach that produces a simple, compact, and actionable 3D world representation by means of 3D primitives.
Unlike existing primitive decomposition methods that rely on 3D input data, our approach operates directly on images.
We show that the resulting textured primitives faithfully reconstruct the input images and accurately model the visible 3D points.
arXiv Detail & Related papers (2023-07-11T17:58:31Z) - TMO: Textured Mesh Acquisition of Objects with a Mobile Device by using
Differentiable Rendering [54.35405028643051]
We present a new pipeline for acquiring a textured mesh in the wild with a single smartphone.
Our method first introduces an RGBD-aided structure from motion, which can yield filtered depth maps.
We adopt the neural implicit surface reconstruction method, which allows for high-quality mesh.
arXiv Detail & Related papers (2023-03-27T10:07:52Z) - HQ3DAvatar: High Quality Controllable 3D Head Avatar [65.70885416855782]
This paper presents a novel approach to building highly photorealistic digital head avatars.
Our method learns a canonical space via an implicit function parameterized by a neural network.
At test time, our method is driven by a monocular RGB video.
arXiv Detail & Related papers (2023-03-25T13:56:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.