SMERF: Streamable Memory Efficient Radiance Fields for Real-Time Large-Scene Exploration
- URL: http://arxiv.org/abs/2312.07541v3
- Date: Tue, 2 Jul 2024 15:26:28 GMT
- Title: SMERF: Streamable Memory Efficient Radiance Fields for Real-Time Large-Scene Exploration
- Authors: Daniel Duckworth, Peter Hedman, Christian Reiser, Peter Zhizhin, Jean-François Thibert, Mario Lučić, Richard Szeliski, Jonathan T. Barron,
- Abstract summary: We introduce SMERF, a view synthesis approach that achieves state-of-the-art accuracy among real-time methods on large scenes.
Our approach enables full six degrees of freedom (6DOF) within a web browser and renders in real-time on commodity smartphones and laptops.
- Score: 32.90257853118381
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent techniques for real-time view synthesis have rapidly advanced in fidelity and speed, and modern methods are capable of rendering near-photorealistic scenes at interactive frame rates. At the same time, a tension has arisen between explicit scene representations amenable to rasterization and neural fields built on ray marching, with state-of-the-art instances of the latter surpassing the former in quality while being prohibitively expensive for real-time applications. In this work, we introduce SMERF, a view synthesis approach that achieves state-of-the-art accuracy among real-time methods on large scenes with footprints up to 300 m$^2$ at a volumetric resolution of 3.5 mm$^3$. Our method is built upon two primary contributions: a hierarchical model partitioning scheme, which increases model capacity while constraining compute and memory consumption, and a distillation training strategy that simultaneously yields high fidelity and internal consistency. Our approach enables full six degrees of freedom (6DOF) navigation within a web browser and renders in real-time on commodity smartphones and laptops. Extensive experiments show that our method exceeds the current state-of-the-art in real-time novel view synthesis by 0.78 dB on standard benchmarks and 1.78 dB on large scenes, renders frames three orders of magnitude faster than state-of-the-art radiance field models, and achieves real-time performance across a wide variety of commodity devices, including smartphones. We encourage readers to explore these models interactively at our project website: https://smerf-3d.github.io.
Related papers
- RadSplat: Radiance Field-Informed Gaussian Splatting for Robust Real-Time Rendering with 900+ FPS [47.47003067842151]
We present RadSplat, a lightweight method for robust real-time rendering of complex scenes.
First, we use radiance fields as a prior and supervision signal for optimizing point-based scene representations, leading to improved quality and more robust optimization.
Next, we develop a novel pruning technique reducing the overall point count while maintaining high quality, leading to smaller and more compact scene representations with faster inference speeds.
arXiv Detail & Related papers (2024-03-20T17:59:55Z) - RAVEN: Rethinking Adversarial Video Generation with Efficient Tri-plane Networks [93.18404922542702]
We present a novel video generative model designed to address long-term spatial and temporal dependencies.
Our approach incorporates a hybrid explicit-implicit tri-plane representation inspired by 3D-aware generative frameworks.
Our model synthesizes high-fidelity video clips at a resolution of $256times256$ pixels, with durations extending to more than $5$ seconds at a frame rate of 30 fps.
arXiv Detail & Related papers (2024-01-11T16:48:44Z) - HybridNeRF: Efficient Neural Rendering via Adaptive Volumetric Surfaces [71.1071688018433]
Neural radiance fields provide state-of-the-art view synthesis quality but tend to be slow to render.
We propose a method, HybridNeRF, that leverages the strengths of both representations by rendering most objects as surfaces.
We improve error rates by 15-30% while achieving real-time framerates (at least 36 FPS) for virtual-reality resolutions (2Kx2K)
arXiv Detail & Related papers (2023-12-05T22:04:49Z) - EvaSurf: Efficient View-Aware Implicit Textured Surface Reconstruction on Mobile Devices [53.28220984270622]
We present an implicit textured $textbfSurf$ace reconstruction method on mobile devices.
Our method can reconstruct high-quality appearance and accurate mesh on both synthetic and real-world datasets.
Our method can be trained in just 1-2 hours using a single GPU and run on mobile devices at over 40 FPS (Frames Per Second)
arXiv Detail & Related papers (2023-11-16T11:30:56Z) - VoxNeRF: Bridging Voxel Representation and Neural Radiance Fields for
Enhanced Indoor View Synthesis [51.49008959209671]
We introduce VoxNeRF, a novel approach that leverages volumetric representations to enhance the quality and efficiency of indoor view synthesis.
We employ multi-resolution hash grids to adaptively capture spatial features, effectively managing occlusions and the intricate geometry of indoor scenes.
We validate our approach against three public indoor datasets and demonstrate that VoxNeRF outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-11-09T11:32:49Z) - 3D Gaussian Splatting for Real-Time Radiance Field Rendering [4.320393382724066]
We introduce three key elements that allow us to achieve state-of-the-art visual quality while maintaining competitive training times.
We demonstrate state-of-the-art visual quality and real-time rendering on several established datasets.
arXiv Detail & Related papers (2023-08-08T06:37:06Z) - Real-time volumetric rendering of dynamic humans [83.08068677139822]
We present a method for fast 3D reconstruction and real-time rendering of dynamic humans from monocular videos.
Our method can reconstruct a dynamic human in less than 3h using a single GPU, compared to recent state-of-the-art alternatives that take up to 72h.
A novel local ray marching rendering allows visualizing the neural human on a mobile VR device at 40 frames per second with minimal loss of visual quality.
arXiv Detail & Related papers (2023-03-21T14:41:25Z) - Fast Non-Rigid Radiance Fields from Monocularized Data [66.74229489512683]
This paper proposes a new method for full 360deg inward-facing novel view synthesis of non-rigidly deforming scenes.
At the core of our method are 1) An efficient deformation module that decouples the processing of spatial and temporal information for accelerated training and inference; and 2) A static module representing the canonical scene as a fast hash-encoded neural radiance field.
In both cases, our method is significantly faster than previous methods, converging in less than 7 minutes and achieving real-time framerates at 1K resolution, while obtaining a higher visual accuracy for generated novel views.
arXiv Detail & Related papers (2022-12-02T18:51:10Z) - DeVRF: Fast Deformable Voxel Radiance Fields for Dynamic Scenes [27.37830742693236]
We present DeVRF, a novel representation to accelerate learning dynamic radiance fields.
Experiments demonstrate that DeVRF achieves two orders of magnitude speedup with on-par high-fidelity results.
arXiv Detail & Related papers (2022-05-31T12:13:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.