Downstream Trade-offs of a Family of Text Watermarks
- URL: http://arxiv.org/abs/2311.09816v2
- Date: Sun, 20 Oct 2024 08:02:24 GMT
- Title: Downstream Trade-offs of a Family of Text Watermarks
- Authors: Anirudh Ajith, Sameer Singh, Danish Pruthi,
- Abstract summary: We evaluate the performance of LLMs watermarked using three different strategies over a diverse suite of tasks.
We find that watermarks can cause significant drops in LLMs' effective utility across all tasks.
Our findings highlight the trade-offs that users should be cognizant of when using watermarked models.
- Score: 25.408313192999504
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Watermarking involves implanting an imperceptible signal into generated text that can later be detected via statistical tests. A prominent family of watermarking strategies for LLMs embeds this signal by upsampling a (pseudorandomly-chosen) subset of tokens at every generation step. However, such signals alter the model's output distribution and can have unintended effects on its downstream performance. In this work, we evaluate the performance of LLMs watermarked using three different strategies over a diverse suite of tasks including those cast as k-class classification (CLS), multiple choice question answering (MCQ), short-form generation (e.g., open-ended question answering) and long-form generation (e.g., translation) tasks. We find that watermarks (under realistic hyperparameters) can cause significant drops in LLMs' effective utility across all tasks. We observe drops of 10 to 20% in CLS tasks in the average case, which shoot up to 100% in the worst case. We notice degradations of about 7% in MCQ tasks, 10-15% in short-form generation, and 5-15% in long-form generation tasks. Our findings highlight the trade-offs that users should be cognizant of when using watermarked models.
Related papers
- Entropy-Guided Watermarking for LLMs: A Test-Time Framework for Robust and Traceable Text Generation [58.85645136534301]
Existing watermarking schemes for sampled text often face trade-offs between maintaining text quality and ensuring robust detection against various attacks.
We propose a novel watermarking scheme that improves both detectability and text quality by introducing a cumulative watermark entropy threshold.
arXiv Detail & Related papers (2025-04-16T14:16:38Z) - GaussMark: A Practical Approach for Structural Watermarking of Language Models [61.84270985214254]
GaussMark is a simple, efficient, and relatively robust scheme for watermarking large language models.
We show that GaussMark is reliable, efficient, and relatively robust to corruptions such as insertions, deletions, substitutions, and roundtrip translations.
arXiv Detail & Related papers (2025-01-17T22:30:08Z) - Ensemble Watermarks for Large Language Models [1.89915151018241]
Acrostica and sensorimotor norms are combined with the established red-green watermark to achieve a 98% detection rate.
The evaluation of all feature combinations reveals that the ensemble of all three consistently has the highest detection rate.
This method is particularly of interest to facilitate accountability and prevent societal harm.
arXiv Detail & Related papers (2024-11-29T09:18:32Z) - Provably Robust Watermarks for Open-Source Language Models [5.509756888700397]
We introduce the first watermarking scheme for open-source language models.
Our scheme works by modifying the parameters of the model, but the watermark can be detected from just the outputs of the model.
Perhaps surprisingly, we prove that our watermarks are unremovable under certain assumptions about the adversary's knowledge.
arXiv Detail & Related papers (2024-10-24T15:44:34Z) - Signal Watermark on Large Language Models [28.711745671275477]
We propose a watermarking method embedding a specific watermark into the text during its generation by Large Language Models (LLMs)
This technique not only ensures the watermark's invisibility to humans but also maintains the quality and grammatical integrity of model-generated text.
Our method has been empirically validated across multiple LLMs, consistently maintaining high detection accuracy.
arXiv Detail & Related papers (2024-10-09T04:49:03Z) - WAPITI: A Watermark for Finetuned Open-Source LLMs [42.1087852764299]
WAPITI is a new method that transfers watermarking from base models to fine-tuned models through parameter integration.
We show that our method can successfully inject watermarks and is highly compatible with fine-tuned models.
arXiv Detail & Related papers (2024-10-09T01:41:14Z) - Can Watermarked LLMs be Identified by Users via Crafted Prompts? [55.460327393792156]
This work is the first to investigate the imperceptibility of watermarked Large Language Models (LLMs)
We design an identification algorithm called Water-Probe that detects watermarks through well-designed prompts.
Experiments show that almost all mainstream watermarking algorithms are easily identified with our well-designed prompts.
arXiv Detail & Related papers (2024-10-04T06:01:27Z) - Less is More: Sparse Watermarking in LLMs with Enhanced Text Quality [27.592486717044455]
We present a novel type of watermark, Sparse Watermark, which aims to mitigate this trade-off by applying watermarks to a small subset of generated tokens distributed across the text.
Our experimental results demonstrate that the proposed watermarking scheme achieves high detectability while generating text that outperforms previous watermarking methods in quality across various tasks.
arXiv Detail & Related papers (2024-07-17T18:52:12Z) - Black-Box Detection of Language Model Watermarks [1.9374282535132377]
We develop rigorous statistical tests to detect, and estimate parameters, of all three popular watermarking scheme families.
We experimentally confirm the effectiveness of our methods on a range of schemes and a diverse set of open-source models.
Our findings indicate that current watermarking schemes are more detectable than previously believed.
arXiv Detail & Related papers (2024-05-28T08:41:30Z) - Lazy Layers to Make Fine-Tuned Diffusion Models More Traceable [70.77600345240867]
A novel arbitrary-in-arbitrary-out (AIAO) strategy makes watermarks resilient to fine-tuning-based removal.
Unlike the existing methods of designing a backdoor for the input/output space of diffusion models, in our method, we propose to embed the backdoor into the feature space of sampled subpaths.
Our empirical studies on the MS-COCO, AFHQ, LSUN, CUB-200, and DreamBooth datasets confirm the robustness of AIAO.
arXiv Detail & Related papers (2024-05-01T12:03:39Z) - WaterBench: Towards Holistic Evaluation of Watermarks for Large Language Models [48.19623266082828]
WaterBench is the first comprehensive benchmark for watermarks in large language models (LLMs)
We introduce WaterBench, the first comprehensive benchmark for LLM watermarks, in which we design three crucial factors.
We evaluate $4$ open-source watermarks on $2$ LLMs under $2$ watermarking strengths and observe the common struggles for current methods on maintaining the generation quality.
arXiv Detail & Related papers (2023-11-13T08:09:01Z) - Unbiased Watermark for Large Language Models [67.43415395591221]
This study examines how significantly watermarks impact the quality of model-generated outputs.
It is possible to integrate watermarks without affecting the output probability distribution.
The presence of watermarks does not compromise the performance of the model in downstream tasks.
arXiv Detail & Related papers (2023-09-22T12:46:38Z) - Towards Codable Watermarking for Injecting Multi-bits Information to LLMs [86.86436777626959]
Large language models (LLMs) generate texts with increasing fluency and realism.
Existing watermarking methods are encoding-inefficient and cannot flexibly meet the diverse information encoding needs.
We propose Codable Text Watermarking for LLMs (CTWL) that allows text watermarks to carry multi-bit customizable information.
arXiv Detail & Related papers (2023-07-29T14:11:15Z) - A Watermark for Large Language Models [84.95327142027183]
We propose a watermarking framework for proprietary language models.
The watermark can be embedded with negligible impact on text quality.
It can be detected using an efficient open-source algorithm without access to the language model API or parameters.
arXiv Detail & Related papers (2023-01-24T18:52:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.