A Framework for Monitoring and Retraining Language Models in Real-World
Applications
- URL: http://arxiv.org/abs/2311.09930v2
- Date: Fri, 17 Nov 2023 09:23:20 GMT
- Title: A Framework for Monitoring and Retraining Language Models in Real-World
Applications
- Authors: Jaykumar Kasundra, Claudia Schulz, Melicaalsadat Mirsafian, Stavroula
Skylaki
- Abstract summary: continuous model monitoring and model retraining is required in many real-world applications.
There are multiple reasons for retraining, including data or concept drift, which may be reflected on the model performance as monitored by an appropriate metric.
We examine the impact of various retraining decision points on crucial factors, such as model performance and resource utilization, in the context of Multilabel Classification models.
- Score: 3.566775910781198
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the Machine Learning (ML) model development lifecycle, training candidate
models using an offline holdout dataset and identifying the best model for the
given task is only the first step. After the deployment of the selected model,
continuous model monitoring and model retraining is required in many real-world
applications. There are multiple reasons for retraining, including data or
concept drift, which may be reflected on the model performance as monitored by
an appropriate metric. Another motivation for retraining is the acquisition of
increasing amounts of data over time, which may be used to retrain and improve
the model performance even in the absence of drifts. We examine the impact of
various retraining decision points on crucial factors, such as model
performance and resource utilization, in the context of Multilabel
Classification models. We explain our key decision points and propose a
reference framework for designing an effective model retraining strategy.
Related papers
- Distilled Datamodel with Reverse Gradient Matching [74.75248610868685]
We introduce an efficient framework for assessing data impact, comprising offline training and online evaluation stages.
Our proposed method achieves comparable model behavior evaluation while significantly speeding up the process compared to the direct retraining method.
arXiv Detail & Related papers (2024-04-22T09:16:14Z) - A Two-Phase Recall-and-Select Framework for Fast Model Selection [13.385915962994806]
We propose a two-phase (coarse-recall and fine-selection) model selection framework.
It aims to enhance the efficiency of selecting a robust model by leveraging the models' training performances on benchmark datasets.
It has been demonstrated that the proposed methodology facilitates the selection of a high-performing model at a rate about 3x times faster than conventional baseline methods.
arXiv Detail & Related papers (2024-03-28T14:44:44Z) - ZhiJian: A Unifying and Rapidly Deployable Toolbox for Pre-trained Model
Reuse [59.500060790983994]
This paper introduces ZhiJian, a comprehensive and user-friendly toolbox for model reuse, utilizing the PyTorch backend.
ZhiJian presents a novel paradigm that unifies diverse perspectives on model reuse, encompassing target architecture construction with PTM, tuning target model with PTM, and PTM-based inference.
arXiv Detail & Related papers (2023-08-17T19:12:13Z) - Towards Efficient Task-Driven Model Reprogramming with Foundation Models [52.411508216448716]
Vision foundation models exhibit impressive power, benefiting from the extremely large model capacity and broad training data.
However, in practice, downstream scenarios may only support a small model due to the limited computational resources or efficiency considerations.
This brings a critical challenge for the real-world application of foundation models: one has to transfer the knowledge of a foundation model to the downstream task.
arXiv Detail & Related papers (2023-04-05T07:28:33Z) - Learning a model is paramount for sample efficiency in reinforcement
learning control of PDEs [5.488334211013093]
We show that learning an actuated model in parallel to training the RL agent significantly reduces the total amount of required data sampled from the real system.
We also show that iteratively updating the model is of major importance to avoid biases in the RL training.
arXiv Detail & Related papers (2023-02-14T16:14:39Z) - DST: Dynamic Substitute Training for Data-free Black-box Attack [79.61601742693713]
We propose a novel dynamic substitute training attack method to encourage substitute model to learn better and faster from the target model.
We introduce a task-driven graph-based structure information learning constrain to improve the quality of generated training data.
arXiv Detail & Related papers (2022-04-03T02:29:11Z) - Model Reprogramming: Resource-Efficient Cross-Domain Machine Learning [65.268245109828]
In data-rich domains such as vision, language, and speech, deep learning prevails to deliver high-performance task-specific models.
Deep learning in resource-limited domains still faces multiple challenges including (i) limited data, (ii) constrained model development cost, and (iii) lack of adequate pre-trained models for effective finetuning.
Model reprogramming enables resource-efficient cross-domain machine learning by repurposing a well-developed pre-trained model from a source domain to solve tasks in a target domain without model finetuning.
arXiv Detail & Related papers (2022-02-22T02:33:54Z) - Learning Dynamics Models for Model Predictive Agents [28.063080817465934]
Model-Based Reinforcement Learning involves learning a textitdynamics model from data, and then using this model to optimise behaviour.
This paper sets out to disambiguate the role of different design choices for learning dynamics models, by comparing their performance to planning with a ground-truth model.
arXiv Detail & Related papers (2021-09-29T09:50:25Z) - Model Reuse with Reduced Kernel Mean Embedding Specification [70.044322798187]
We present a two-phase framework for finding helpful models for a current application.
In the upload phase, when a model is uploading into the pool, we construct a reduced kernel mean embedding (RKME) as a specification for the model.
Then in the deployment phase, the relatedness of the current task and pre-trained models will be measured based on the value of the RKME specification.
arXiv Detail & Related papers (2020-01-20T15:15:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.