論文の概要: Data-Driven Bayesian Network Models of Hurricane Evacuation Decision Making
- arxiv url: http://arxiv.org/abs/2311.10228v2
- Date: Sat, 28 Sep 2024 18:59:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-01 21:59:13.783657
- Title: Data-Driven Bayesian Network Models of Hurricane Evacuation Decision Making
- Title(参考訳): ハリケーン避難決定のためのデータ駆動ベイジアンネットワークモデル
- Authors: Hui Sophie Wang, Nutchanon Yongsatianchot, Stacy Marsella,
- Abstract要約: ハリケーン時の避難決定をモデル化するためにベイジアンネットワーク(BN)を提案する。
ハリケーン・ハーベイ(Hurricane Harvey)とハリケーン・イルマ(Hurricane Irma)の2つの重要なハリケーンイベントのアンケートデータを収集した。
両ハリケーンの学習構造について検討・比較し,避難予測因子間の因果関係について検討した。
- 参考スコア(独自算出の注目度): 2.749589513485177
- License:
- Abstract: Hurricanes cause significant economic and human costs, requiring individuals to make critical evacuation decisions under uncertainty and stress. To enhance the understanding of this decision-making process, we propose using Bayesian Networks (BNs) to model evacuation decisions during hurricanes. We collected questionnaire data from two significant hurricane events: Hurricane Harvey and Hurricane Irma. We employed a data-driven approach by first conducting variable selection using mutual information, followed by BN structure learning with two constraint-based algorithms. The robustness of the learned structures was enhanced by model averaging based on bootstrap resampling. We examined and compared the learned structures of both hurricanes, revealing potential causal relationships among key predictors of evacuation, including risk perception, information received from media, suggestions from family and friends, and neighbors evacuating. Our findings highlight the significant role of social influence, providing valuable insights into the process of evacuation decision-making. Our results demonstrate the applicability and effectiveness of data-driven BN modeling in evacuation decision making.
- Abstract(参考訳): ハリケーンは経済的・人的コストを著しく増加させ、個人が不確実性やストレスの下で重要な避難決定を下さなければならない。
この意思決定プロセスの理解を深めるため,ハリケーン時の避難決定をモデル化するためにベイジアンネットワーク(BN)を提案する。
ハリケーン・ハーベイ(Hurricane Harvey)とハリケーン・イルマ(Hurricane Irma)の2つの重要なハリケーンイベントのアンケートデータを収集した。
我々は,まず相互情報を用いた変数選択を行い,次に2つの制約ベースのアルゴリズムを用いてBN構造学習を行った。
学習構造の堅牢性は,ブートストラップ再サンプリングに基づくモデル平均化によって向上した。
リスク認知,メディアからの情報,家族や友人からの提言,近隣住民の避難など,避難の主要な予測者間の因果関係を明らかにするとともに,両ハリケーンの学習構造について検討・比較を行った。
本研究は, 社会的影響の意義を浮き彫りにして, 避難意思決定の過程に関する貴重な知見を提供するものである。
避難意思決定におけるデータ駆動型BNモデリングの適用性と有効性を示した。
関連論文リスト
- CrisisSense-LLM: Instruction Fine-Tuned Large Language Model for Multi-label Social Media Text Classification in Disaster Informatics [49.2719253711215]
本研究では,事前学習型大規模言語モデル(LLM)の強化による災害テキスト分類への新たなアプローチを提案する。
本手法では,災害関連ツイートから包括的インストラクションデータセットを作成し,それをオープンソース LLM の微調整に用いる。
この微調整モデルでは,災害関連情報の種類,情報化,人的援助の関与など,複数の側面を同時に分類することができる。
論文 参考訳(メタデータ) (2024-06-16T23:01:10Z) - Explaining by Imitating: Understanding Decisions by Interpretable Policy
Learning [72.80902932543474]
観察されたデータから人間の行動を理解することは、意思決定における透明性と説明責任にとって重要である。
意思決定者の方針をモデル化することが困難である医療などの現実的な設定を考えてみましょう。
本稿では, 設計による透明性の向上, 部分観測可能性の確保, 完全にオフラインで動作可能なデータ駆動型意思決定行動の表現を提案する。
論文 参考訳(メタデータ) (2023-10-28T13:06:14Z) - DeCrisisMB: Debiased Semi-Supervised Learning for Crisis Tweet
Classification via Memory Bank [52.20298962359658]
危機イベントにおいて、人々は、状況、警告、アドバイス、サポートに関する情報を広めるために、Twitterのようなソーシャルメディアプラットフォームを使うことが多い。
完全に教師されたアプローチでは、大量のデータを注釈付けする必要があります。
半教師付きモデルは偏りがあり、特定のクラスでは適度に機能し、他のクラスでは極めて貧弱である。
本稿では,メモリバンクを用いて,各学習クラスから生成された擬似ラベルを等しくサンプリングする,単純かつ効果的なデバイアス処理手法であるDeCrisisMBを提案する。
論文 参考訳(メタデータ) (2023-10-23T05:25:51Z) - HurriCast: An Automatic Framework Using Machine Learning and Statistical
Modeling for Hurricane Forecasting [5.806235734006766]
ハリケーンは、その破壊的な影響により、アメリカにおいて大きな課題を呈している。
これらのリスクを緩和することは重要であり、この取り組みの中心は保険業界である。
本研究では,ARIMAモデルとK-MEANSを組み合わせることで,ハリケーンの傾向をより正確に把握する手法を提案する。
論文 参考訳(メタデータ) (2023-09-12T19:48:52Z) - Investigating disaster response through social media data and the
Susceptible-Infected-Recovered (SIR) model: A case study of 2020 Western U.S.
wildfire season [0.8999666725996975]
ソーシャルメディアは災害時の公衆の懸念や要求を反映することができる。
Twitterデータからトピックをクラスタリングするために、BERT(Bidirectional Representations from Transformers)トピックモデリングを使用しました。
本研究では、ソーシャルメディアデータを用いたSIRモデルとトピックモデリングが、災害対応を定量的に評価するための意思決定者に提供する方法について詳述する。
論文 参考訳(メタデータ) (2023-08-10T01:51:33Z) - Causal Disentangled Variational Auto-Encoder for Preference
Understanding in Recommendation [50.93536377097659]
本稿では,コメンテータシステムにおける対話データから因果不整合表現を学習するためのCaD-VAE(Causal Disentangled Variational Auto-Encoder)を提案する。
この手法は構造因果モデルを用いて、潜在因子間の因果関係を記述する因果表現を生成する。
論文 参考訳(メタデータ) (2023-04-17T00:10:56Z) - Predicting Hurricane Evacuation Decisions with Interpretable Machine
Learning Models [0.0]
本研究では,容易にアクセス可能な人口動態と資源関連予測器によって構築された世帯の避難決定を予測するための新しい手法を提案する。
提案手法は,避難交通需要の推計を改善するため,緊急管理当局に新たなツールと枠組みを提供する可能性がある。
論文 参考訳(メタデータ) (2023-03-12T03:45:44Z) - An Energy Consumption Model for Electrical Vehicle Networks via Extended
Federated-learning [50.85048976506701]
本稿では,フェデレートラーニングモデルに基づく不安度を測る新しい手法を提案する。
バッテリー消費を推定し、車両ネットワークにエネルギー効率の高いルートプランニングを提供する。
論文 参考訳(メタデータ) (2021-11-13T15:03:44Z) - Learning Bias-Invariant Representation by Cross-Sample Mutual
Information Minimization [77.8735802150511]
対象タスクが誤用したバイアス情報を除去するために,クロスサンプル対逆脱バイアス法(CSAD)を提案する。
相関測定は, 対向的偏り評価において重要な役割を担い, クロスサンプル型相互情報推定器によって行われる。
我々は,提案手法の最先端手法に対する利点を検証するために,公開データセットの徹底的な実験を行った。
論文 参考訳(メタデータ) (2021-08-11T21:17:02Z) - Constructing Evacuation Evolution Patterns and Decisions Using Mobile
Device Location Data: A Case Study of Hurricane Irma [5.902556437760098]
本稿では,大規模な携帯電話位置情報サービス(LBS)データを用いて,ハリケーンイルマの上陸時の避難パターンを構築した。
ユーザの避難判断,出発・再入国日分布,目的地選択を検討した。
分析の結果,避難選択のモデル化における個人の移動行動の重要性が明らかになった。
論文 参考訳(メタデータ) (2021-02-24T23:24:10Z) - Understanding the Dynamics of Information Flow During Disaster Response
Using Absorbing Markov Chains [15.97186478109836]
本稿では,災害対応効果に対する情報フローの影響を評価するための定量的モデルを提案する。
モデルの中核は、連邦支援をコミュニティに届ける過程をモデル化する、特別な吸収マルコフ連鎖である。
論文 参考訳(メタデータ) (2020-06-11T15:28:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。