論文の概要: An Energy Consumption Model for Electrical Vehicle Networks via Extended
Federated-learning
- arxiv url: http://arxiv.org/abs/2111.08472v1
- Date: Sat, 13 Nov 2021 15:03:44 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-17 16:15:29.835384
- Title: An Energy Consumption Model for Electrical Vehicle Networks via Extended
Federated-learning
- Title(参考訳): 拡張フェデレーション学習による電気自動車ネットワークのエネルギー消費モデル
- Authors: Shiliang Zhang
- Abstract要約: 本稿では,フェデレートラーニングモデルに基づく不安度を測る新しい手法を提案する。
バッテリー消費を推定し、車両ネットワークにエネルギー効率の高いルートプランニングを提供する。
- 参考スコア(独自算出の注目度): 50.85048976506701
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Electrical vehicle (EV) raises to promote an eco-sustainable society.
Nevertheless, the ``range anxiety'' of EV hinders its wider acceptance among
customers. This paper proposes a novel solution to range anxiety based on a
federated-learning model, which is capable of estimating battery consumption
and providing energy-efficient route planning for vehicle networks.
Specifically, the new approach extends the federated-learning structure with
two components: anomaly detection and sharing policy. The first component
identifies preventing factors in model learning, while the second component
offers guidelines for information sharing amongst vehicle networks when the
sharing is necessary to preserve learning efficiency. The two components
collaborate to enhance learning robustness against data heterogeneities in
networks. Numerical experiments are conducted, and the results show that
compared with considered solutions, the proposed approach could provide higher
accuracy of battery-consumption estimation for vehicles under heterogeneous
data distributions, without increasing the time complexity or transmitting raw
data among vehicle networks.
- Abstract(参考訳): 電気自動車(EV)は、エコサステナブル社会を促進するために上昇する。
それでも、EVの'レンジ不安'は、顧客の間で広く受け入れられることを妨げる。
本稿では,車両ネットワークにおけるバッテリー消費を推定し,エネルギー効率の高い経路計画を提供するフェデレーション学習モデルに基づく,距離不安の新たな解決法を提案する。
具体的には、新しいアプローチは連合学習構造を、異常検出と共有ポリシという2つのコンポーネントで拡張する。
第1のコンポーネントは、モデル学習の防止要因を特定し、第2のコンポーネントは、学習効率を維持するために共有が必要な場合に、車両ネットワーク間での情報共有のためのガイドラインを提供する。
この2つのコンポーネントは、ネットワーク内のデータ不均一性に対する学習の堅牢性を高めるために協力する。
数値実験を行い, 提案手法は検討した解と比較して, 時間的複雑さを増すことなく, 異種データ分布下における車両のバッテリ消費推定の精度を向上できることを示した。
関連論文リスト
- DRL-Based Optimization for AoI and Energy Consumption in C-V2X Enabled IoV [33.32647734550201]
本稿では,C-V2X車両通信システムにおけるマルチプライオリティキューとNOMAが情報時代に与える影響を解析する。
提案手法は,エネルギー消費とAoIの両面での進歩を示すものである。
論文 参考訳(メタデータ) (2024-11-20T07:59:35Z) - Unified End-to-End V2X Cooperative Autonomous Driving [21.631099800753795]
UniE2EV2Xは、V2Xに統合されたエンドツーエンドの自動運転システムで、主要な駆動モジュールを統合ネットワーク内で統合する。
このフレームワークは変形可能な注意ベースのデータ融合戦略を採用し、車とインフラの協調を効果的に促進する。
We implement the UniE2EV2X framework on the challenge DeepAccident, a simulation dataset designed for V2X collaborative driving。
論文 参考訳(メタデータ) (2024-05-07T03:01:40Z) - Decentralized Multimedia Data Sharing in IoV: A Learning-based Equilibrium of Supply and Demand [57.82021900505197]
インターネット・オブ・ビークルズ(IoV)は、道路の安全性を高め、交通渋滞を軽減し、インフォテインメントアプリケーションを通じてユーザーエクスペリエンスを向上させることにより、交通システムを変革する大きな可能性を秘めている。
分散データ共有は、セキュリティ、プライバシ、信頼性を改善し、IoVにおけるインフォテインメントデータの共有を容易にする。
市場における需給バランスを学習するための多知能強化学習に基づく分散型データ共有インセンティブ機構を提案する。
論文 参考訳(メタデータ) (2024-03-29T14:58:28Z) - A V2X-based Privacy Preserving Federated Measuring and Learning System [0.0]
本稿では,V2V(Var-to-Vehicle)通信を介して,同志の車両にリアルタイムなデータを提供するフェデレート計測学習システムを提案する。
また,交通ネットワークの予測モデルを作成するために,車両ネットワーク(V2N)リンク上で連合学習スキームを運用している。
その結果,提案方式では学習性能が向上し,アグリゲータサーバ側での盗聴を防止することができた。
論文 参考訳(メタデータ) (2024-01-24T23:11:11Z) - Enhanced Decentralized Federated Learning based on Consensus in
Connected Vehicles [14.80476265018825]
分散システムにおける機械学習(ML)モデルをトレーニングするための新しいパラダイムとして、フェデレートラーニング(FL)が登場している。
我々は,C-DFL (Consensus based Decentralized Federated Learning)を導入し,コネクテッドカーにおけるフェデレーションラーニングに取り組む。
論文 参考訳(メタデータ) (2022-09-22T01:21:23Z) - Federated Deep Learning Meets Autonomous Vehicle Perception: Design and
Verification [168.67190934250868]
フェデレーテッド・ラーニング・パワード・コネクテッド・オートモービル(FLCAV)が提案されている。
FLCAVは通信とアノテーションのコストを削減しながらプライバシを保存する。
マルチステージトレーニングのためのネットワークリソースと道路センサのポーズを決定することは困難である。
論文 参考訳(メタデータ) (2022-06-03T23:55:45Z) - Hybrid Reinforcement Learning-Based Eco-Driving Strategy for Connected
and Automated Vehicles at Signalized Intersections [3.401874022426856]
視覚知覚法は車間通信(V2I)と統合され、より高モビリティとエネルギー効率を実現する。
HRLフレームワークには3つのコンポーネントがある。ルールベースのドライビングマネージャで、ルールベースのポリシーとRLポリシーの協調を運用する。
実験により, HRL法によりエネルギー消費量を12.70%削減し, 11.75%の移動時間を省くことができた。
論文 参考訳(メタデータ) (2022-01-19T19:31:12Z) - Federated Learning over Wireless IoT Networks with Optimized
Communication and Resources [98.18365881575805]
協調学習技術のパラダイムとしてのフェデレートラーニング(FL)は研究の注目を集めている。
無線システム上での高速応答および高精度FLスキームの検証が重要である。
提案する通信効率のよいフェデレーション学習フレームワークは,強い線形速度で収束することを示す。
論文 参考訳(メタデータ) (2021-10-22T13:25:57Z) - Vehicular Cooperative Perception Through Action Branching and Federated
Reinforcement Learning [101.64598586454571]
強化学習に基づく車両関連、リソースブロック(RB)割り当て、協調認識メッセージ(CPM)のコンテンツ選択を可能にする新しいフレームワークが提案されている。
車両全体のトレーニングプロセスをスピードアップするために、フェデレーションRLアプローチが導入されます。
その結果、フェデレーションRLはトレーニングプロセスを改善し、非フェデレーションアプローチと同じ時間内により良いポリシーを達成できることが示された。
論文 参考訳(メタデータ) (2020-12-07T02:09:15Z) - Mobile Cellular-Connected UAVs: Reinforcement Learning for Sky Limits [71.28712804110974]
本稿では,UAVの切断時間,ハンドオーバ速度,エネルギー消費を低減するため,MAB(Multi-armed bandit)アルゴリズムを提案する。
それぞれの性能指標(PI)が、適切な学習パラメータの範囲を採用することにより、どのように改善されるかを示す。
論文 参考訳(メタデータ) (2020-09-21T12:35:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。