Data-Driven Bayesian Network Models of Hurricane Evacuation Decision Making
- URL: http://arxiv.org/abs/2311.10228v2
- Date: Sat, 28 Sep 2024 18:59:27 GMT
- Title: Data-Driven Bayesian Network Models of Hurricane Evacuation Decision Making
- Authors: Hui Sophie Wang, Nutchanon Yongsatianchot, Stacy Marsella,
- Abstract summary: We propose using Bayesian Networks (BNs) to model evacuation decisions during hurricanes.
We collected questionnaire data from two significant hurricane events: Hurricane Harvey and Hurricane Irma.
We examined and compared the learned structures of both hurricanes, revealing potential causal relationships among key predictors of evacuation.
- Score: 2.749589513485177
- License:
- Abstract: Hurricanes cause significant economic and human costs, requiring individuals to make critical evacuation decisions under uncertainty and stress. To enhance the understanding of this decision-making process, we propose using Bayesian Networks (BNs) to model evacuation decisions during hurricanes. We collected questionnaire data from two significant hurricane events: Hurricane Harvey and Hurricane Irma. We employed a data-driven approach by first conducting variable selection using mutual information, followed by BN structure learning with two constraint-based algorithms. The robustness of the learned structures was enhanced by model averaging based on bootstrap resampling. We examined and compared the learned structures of both hurricanes, revealing potential causal relationships among key predictors of evacuation, including risk perception, information received from media, suggestions from family and friends, and neighbors evacuating. Our findings highlight the significant role of social influence, providing valuable insights into the process of evacuation decision-making. Our results demonstrate the applicability and effectiveness of data-driven BN modeling in evacuation decision making.
Related papers
- CrisisSense-LLM: Instruction Fine-Tuned Large Language Model for Multi-label Social Media Text Classification in Disaster Informatics [49.2719253711215]
This study introduces a novel approach to disaster text classification by enhancing a pre-trained Large Language Model (LLM)
Our methodology involves creating a comprehensive instruction dataset from disaster-related tweets, which is then used to fine-tune an open-source LLM.
This fine-tuned model can classify multiple aspects of disaster-related information simultaneously, such as the type of event, informativeness, and involvement of human aid.
arXiv Detail & Related papers (2024-06-16T23:01:10Z) - Explaining by Imitating: Understanding Decisions by Interpretable Policy
Learning [72.80902932543474]
Understanding human behavior from observed data is critical for transparency and accountability in decision-making.
Consider real-world settings such as healthcare, in which modeling a decision-maker's policy is challenging.
We propose a data-driven representation of decision-making behavior that inheres transparency by design, accommodates partial observability, and operates completely offline.
arXiv Detail & Related papers (2023-10-28T13:06:14Z) - DeCrisisMB: Debiased Semi-Supervised Learning for Crisis Tweet
Classification via Memory Bank [52.20298962359658]
In crisis events, people often use social media platforms such as Twitter to disseminate information about the situation, warnings, advice, and support.
fully-supervised approaches require annotating vast amounts of data and are impractical due to limited response time.
Semi-supervised models can be biased, performing moderately well for certain classes while performing extremely poorly for others.
We propose a simple but effective debiasing method, DeCrisisMB, that utilizes a Memory Bank to store and perform equal sampling for generated pseudo-labels from each class at each training.
arXiv Detail & Related papers (2023-10-23T05:25:51Z) - HurriCast: An Automatic Framework Using Machine Learning and Statistical
Modeling for Hurricane Forecasting [5.806235734006766]
Hurricanes present major challenges in the U.S. due to their devastating impacts.
Mitigating these risks is important, and the insurance industry is central in this effort.
This study introduces a refined approach combining the ARIMA model and K-MEANS to better capture hurricane trends.
arXiv Detail & Related papers (2023-09-12T19:48:52Z) - Investigating disaster response through social media data and the
Susceptible-Infected-Recovered (SIR) model: A case study of 2020 Western U.S.
wildfire season [0.8999666725996975]
Social media can reflect public concerns and demands during a disaster.
We used Bidirectional Representations from Transformers (BERT) topic modeling to cluster topics from Twitter data.
Our study details how the SIR model and topic modeling using social media data can provide decision-makers with a quantitative approach to measure disaster response.
arXiv Detail & Related papers (2023-08-10T01:51:33Z) - Causal Disentangled Variational Auto-Encoder for Preference
Understanding in Recommendation [50.93536377097659]
This paper introduces the Causal Disentangled Variational Auto-Encoder (CaD-VAE), a novel approach for learning causal disentangled representations from interaction data in recommender systems.
The approach utilizes structural causal models to generate causal representations that describe the causal relationship between latent factors.
arXiv Detail & Related papers (2023-04-17T00:10:56Z) - Predicting Hurricane Evacuation Decisions with Interpretable Machine
Learning Models [0.0]
This study proposes a new methodology for predicting households' evacuation decisions constructed by easily accessible demographic and resource-related predictors.
The proposed methodology could provide a new tool and framework for the emergency management authorities to improve the estimation of evacuation traffic demands.
arXiv Detail & Related papers (2023-03-12T03:45:44Z) - An Energy Consumption Model for Electrical Vehicle Networks via Extended
Federated-learning [50.85048976506701]
This paper proposes a novel solution to range anxiety based on a federated-learning model.
It is capable of estimating battery consumption and providing energy-efficient route planning for vehicle networks.
arXiv Detail & Related papers (2021-11-13T15:03:44Z) - Learning Bias-Invariant Representation by Cross-Sample Mutual
Information Minimization [77.8735802150511]
We propose a cross-sample adversarial debiasing (CSAD) method to remove the bias information misused by the target task.
The correlation measurement plays a critical role in adversarial debiasing and is conducted by a cross-sample neural mutual information estimator.
We conduct thorough experiments on publicly available datasets to validate the advantages of the proposed method over state-of-the-art approaches.
arXiv Detail & Related papers (2021-08-11T21:17:02Z) - Constructing Evacuation Evolution Patterns and Decisions Using Mobile
Device Location Data: A Case Study of Hurricane Irma [5.902556437760098]
This paper utilized a large mobile phone Location-Based Services (LBS) data to construct the evacuation pattern during the landfall of Hurricane Irma.
We studied users' evacuation decisions, departure and reentry date distribution, and destination choice.
Our analysis revealed the importance of the individuals' mobility behavior in modeling the evacuation decision choice.
arXiv Detail & Related papers (2021-02-24T23:24:10Z) - Understanding the Dynamics of Information Flow During Disaster Response
Using Absorbing Markov Chains [15.97186478109836]
This paper aims to derive a quantitative model to evaluate the impact of information flow on the effectiveness of disaster response.
At the core of the model is a specialized absorbing Markov chain that models the process of delivering federal assistance to the community.
arXiv Detail & Related papers (2020-06-11T15:28:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.