Black Box Causal Inference: Effect Estimation via Meta Prediction
- URL: http://arxiv.org/abs/2503.05985v1
- Date: Fri, 07 Mar 2025 23:43:19 GMT
- Title: Black Box Causal Inference: Effect Estimation via Meta Prediction
- Authors: Lucius E. J. Bynum, Aahlad Manas Puli, Diego Herrero-Quevedo, Nhi Nguyen, Carlos Fernandez-Granda, Kyunghyun Cho, Rajesh Ranganath,
- Abstract summary: We frame causal inference as a dataset-level prediction problem, offloading algorithm design to the learning process.<n>We introduce, called black box causal inference (BBCI), builds estimators in a black-box manner by learning to predict causal effects from sampled dataset-effect pairs.<n>We demonstrate accurate estimation of average treatment effects (ATEs) and conditional average treatment effects (CATEs) with BBCI across several causal inference problems.
- Score: 56.277798874118425
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Causal inference and the estimation of causal effects plays a central role in decision-making across many areas, including healthcare and economics. Estimating causal effects typically requires an estimator that is tailored to each problem of interest. But developing estimators can take significant effort for even a single causal inference setting. For example, algorithms for regression-based estimators, propensity score methods, and doubly robust methods were designed across several decades to handle causal estimation with observed confounders. Similarly, several estimators have been developed to exploit instrumental variables (IVs), including two-stage least-squares (TSLS), control functions, and the method-of-moments. In this work, we instead frame causal inference as a dataset-level prediction problem, offloading algorithm design to the learning process. The approach we introduce, called black box causal inference (BBCI), builds estimators in a black-box manner by learning to predict causal effects from sampled dataset-effect pairs. We demonstrate accurate estimation of average treatment effects (ATEs) and conditional average treatment effects (CATEs) with BBCI across several causal inference problems with known identification, including problems with less developed estimators.
Related papers
- Targeted Machine Learning for Average Causal Effect Estimation Using the
Front-Door Functional [3.0232957374216953]
evaluating the average causal effect (ACE) of a treatment on an outcome often involves overcoming the challenges posed by confounding factors in observational studies.
Here, we introduce novel estimation strategies for the front-door criterion based on the targeted minimum loss-based estimation theory.
We demonstrate the applicability of these estimators to analyze the effect of early stage academic performance on future yearly income.
arXiv Detail & Related papers (2023-12-15T22:04:53Z) - Benchmarking Bayesian Causal Discovery Methods for Downstream Treatment
Effect Estimation [137.3520153445413]
A notable gap exists in the evaluation of causal discovery methods, where insufficient emphasis is placed on downstream inference.
We evaluate seven established baseline causal discovery methods including a newly proposed method based on GFlowNets.
The results of our study demonstrate that some of the algorithms studied are able to effectively capture a wide range of useful and diverse ATE modes.
arXiv Detail & Related papers (2023-07-11T02:58:10Z) - B-Learner: Quasi-Oracle Bounds on Heterogeneous Causal Effects Under
Hidden Confounding [51.74479522965712]
We propose a meta-learner called the B-Learner, which can efficiently learn sharp bounds on the CATE function under limits on hidden confounding.
We prove its estimates are valid, sharp, efficient, and have a quasi-oracle property with respect to the constituent estimators under more general conditions than existing methods.
arXiv Detail & Related papers (2023-04-20T18:07:19Z) - NESTER: An Adaptive Neurosymbolic Method for Causal Effect Estimation [37.361149306896024]
Causal effect estimation from observational data is a central problem in causal inference.
We propose an adaptive method called Neurosymbolic Causal Effect Estimator (NESTER)
Our comprehensive empirical results show that NESTER performs better than state-of-the-art methods on benchmark datasets.
arXiv Detail & Related papers (2022-11-08T16:48:46Z) - An evaluation framework for comparing causal inference models [3.1372269816123994]
We use the proposed evaluation methodology to compare several state-of-the-art causal effect estimation models.
The main motivation behind this approach is the elimination of the influence of a small number of instances or simulation on the benchmarking process.
arXiv Detail & Related papers (2022-08-31T21:04:20Z) - Robust and Agnostic Learning of Conditional Distributional Treatment
Effects [62.44901952244514]
The conditional average treatment effect (CATE) is the best point prediction of individual causal effects.
In aggregate analyses, this is usually addressed by measuring distributional treatment effect (DTE)
We provide a new robust and model-agnostic methodology for learning the conditional DTE (CDTE) for a wide class of problems.
arXiv Detail & Related papers (2022-05-23T17:40:31Z) - SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event
Data [83.50281440043241]
We study the problem of inferring heterogeneous treatment effects from time-to-event data.
We propose a novel deep learning method for treatment-specific hazard estimation based on balancing representations.
arXiv Detail & Related papers (2021-10-26T20:13:17Z) - Causal Effect Estimation using Variational Information Bottleneck [19.6760527269791]
Causal inference is to estimate the causal effect in a causal relationship when intervention is applied.
We propose a method to estimate Causal Effect by using Variational Information Bottleneck (CEVIB)
arXiv Detail & Related papers (2021-10-26T13:46:12Z) - Confounding Feature Acquisition for Causal Effect Estimation [6.174721516017138]
We frame this challenge as a problem of feature acquisition of confounding features for causal inference.
Our goal is to prioritize acquiring values for a fixed and known subset of missing confounders in samples that lead to efficient average treatment effect estimation.
arXiv Detail & Related papers (2020-11-17T16:28:43Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
Doubly-robust cross-fit estimators have been proposed to yield better statistical properties.
We conducted a simulation study to assess the performance of several estimators for the average causal effect (ACE)
When used with machine learning, the doubly-robust cross-fit estimators substantially outperformed all of the other estimators in terms of bias, variance, and confidence interval coverage.
arXiv Detail & Related papers (2020-04-21T23:09:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.