Secure Instruction and Data-Level Information Flow Tracking Model for RISC-V
- URL: http://arxiv.org/abs/2311.10283v1
- Date: Fri, 17 Nov 2023 02:04:07 GMT
- Title: Secure Instruction and Data-Level Information Flow Tracking Model for RISC-V
- Authors: Geraldine Shirley Nicholas, Dhruvakumar Vikas Aklekar, Bhavin Thakar, Fareena Saqib,
- Abstract summary: Unauthorized access, fault injection, and privacy invasion are potential threats from untrusted actors.
We propose an integrated Information Flow Tracking (IFT) technique to enable runtime security to protect system integrity.
This study proposes a multi-level IFT model that integrates a hardware-based IFT technique with a gate-level-based IFT (GLIFT) technique.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Rising device use and third-party IP integration in semiconductors raise security concerns. Unauthorized access, fault injection, and privacy invasion are potential threats from untrusted actors. Different security techniques have been proposed to provide resilience to secure devices from potential vulnerabilities; however, no one technique can be applied as an overarching solution. We propose an integrated Information Flow Tracking (IFT) technique to enable runtime security to protect system integrity by tracking the flow of data from untrusted communication channels. Existing hardware-based IFT schemes are either fine-, which are resource-intensive, or coarse-grained models, which have minimal precision logic, providing either control flow or data-flow integrity. No current security model provides multi-granularity due to the difficulty in balancing both the flexibility and hardware overheads at the same time. This study proposes a multi-level granularity IFT model that integrates a hardware-based IFT technique with a gate-level-based IFT (GLIFT) technique, along with flexibility, for better precision and assessments. Translation from the instruction level to the data level is based on module instantiation with security-critical data for accurate information flow behaviors without any false conservative flows. A simulation-based IFT model is demonstrated, which translates the architecture-specific extensions into a compiler-specific simulation model with toolchain extensions for Reduced Instruction Set Architecture (RISC-V) to verify the security extensions. This approach provides better precision logic by enhancing the tagged mechanism with 1-bit tags and implementing an optimized shadow logic that eliminates the area overhead by tracking the data for only security-critical modules.
Related papers
- Digital Twin-Assisted Federated Learning with Blockchain in Multi-tier Computing Systems [67.14406100332671]
In Industry 4.0 systems, resource-constrained edge devices engage in frequent data interactions.
This paper proposes a digital twin (DT) and federated digital twin (FL) scheme.
The efficacy of our proposed cooperative interference-based FL process has been verified through numerical analysis.
arXiv Detail & Related papers (2024-11-04T17:48:02Z) - CTINEXUS: Leveraging Optimized LLM In-Context Learning for Constructing Cybersecurity Knowledge Graphs Under Data Scarcity [49.657358248788945]
Textual descriptions in cyber threat intelligence (CTI) reports are rich sources of knowledge about cyber threats.
Current CTI extraction methods lack flexibility and generalizability, often resulting in inaccurate and incomplete knowledge extraction.
We propose CTINexus, a novel framework leveraging optimized in-context learning (ICL) of large language models.
arXiv Detail & Related papers (2024-10-28T14:18:32Z) - INTELLECT: Adapting Cyber Threat Detection to Heterogeneous Computing Environments [0.055923945039144884]
This paper introduces INTELLECT, a novel solution that integrates feature selection, model pruning, and fine-tuning techniques into a cohesive pipeline for the dynamic adaptation of pre-trained ML models and configurations for IDSs.
We demonstrate the advantages of incorporating knowledge distillation techniques while fine-tuning, enabling the ML model to consistently adapt to local network patterns while preserving historical knowledge.
arXiv Detail & Related papers (2024-07-17T22:34:29Z) - Security Vulnerability Detection with Multitask Self-Instructed Fine-Tuning of Large Language Models [8.167614500821223]
We introduce MSIVD, multitask self-instructed fine-tuning for vulnerability detection, inspired by chain-of-thought prompting and LLM self-instruction.
Our experiments demonstrate that MSIVD achieves superior performance, outperforming the highest LLM-based vulnerability detector baseline (LineVul) with a F1 score of 0.92 on the BigVul dataset, and 0.48 on the PreciseBugs dataset.
arXiv Detail & Related papers (2024-06-09T19:18:05Z) - Enabling Privacy-Preserving Cyber Threat Detection with Federated Learning [4.475514208635884]
This study systematically profiles the (in)feasibility of learning for privacy-preserving cyber threat detection in terms of effectiveness, byzantine resilience, and efficiency.
It shows that FL-trained detection models can achieve a performance that is comparable to centrally trained counterparts.
Under a realistic threat model, FL turns out to be adversary-resistant to attacks of both data poisoning and model poisoning.
arXiv Detail & Related papers (2024-04-08T01:16:56Z) - Enhancing Security in Federated Learning through Adaptive
Consensus-Based Model Update Validation [2.28438857884398]
This paper introduces an advanced approach for fortifying Federated Learning (FL) systems against label-flipping attacks.
We propose a consensus-based verification process integrated with an adaptive thresholding mechanism.
Our results indicate a significant mitigation of label-flipping attacks, bolstering the FL system's resilience.
arXiv Detail & Related papers (2024-03-05T20:54:56Z) - Privacy-Preserving Distributed Learning for Residential Short-Term Load
Forecasting [11.185176107646956]
Power system load data can inadvertently reveal the daily routines of residential users, posing a risk to their property security.
We introduce a Markovian Switching-based distributed training framework, the convergence of which is substantiated through rigorous theoretical analysis.
Case studies employing real-world power system load data validate the efficacy of our proposed algorithm.
arXiv Detail & Related papers (2024-02-02T16:39:08Z) - HasTEE+ : Confidential Cloud Computing and Analytics with Haskell [50.994023665559496]
Confidential computing enables the protection of confidential code and data in a co-tenanted cloud deployment using specialized hardware isolation units called Trusted Execution Environments (TEEs)
TEEs offer low-level C/C++-based toolchains that are susceptible to inherent memory safety vulnerabilities and lack language constructs to monitor explicit and implicit information-flow leaks.
We address the above with HasTEE+, a domain-specific language (cla) embedded in Haskell that enables programming TEEs in a high-level language with strong type-safety.
arXiv Detail & Related papers (2024-01-17T00:56:23Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
In practical scenarios where training data is limited, many predictive signals in the data can be rather from some biases in data acquisition.
We consider an adversarial threat model under a mutual information constraint to cover a wider class of perturbations in training.
We propose an autoencoder-based training to implement the objective, as well as practical encoder designs to facilitate the proposed hybrid discriminative-generative training.
arXiv Detail & Related papers (2023-03-24T16:03:21Z) - Recursively Feasible Probabilistic Safe Online Learning with Control Barrier Functions [60.26921219698514]
We introduce a model-uncertainty-aware reformulation of CBF-based safety-critical controllers.
We then present the pointwise feasibility conditions of the resulting safety controller.
We use these conditions to devise an event-triggered online data collection strategy.
arXiv Detail & Related papers (2022-08-23T05:02:09Z) - Safe RAN control: A Symbolic Reinforcement Learning Approach [62.997667081978825]
We present a Symbolic Reinforcement Learning (SRL) based architecture for safety control of Radio Access Network (RAN) applications.
We provide a purely automated procedure in which a user can specify high-level logical safety specifications for a given cellular network topology.
We introduce a user interface (UI) developed to help a user set intent specifications to the system, and inspect the difference in agent proposed actions.
arXiv Detail & Related papers (2021-06-03T16:45:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.