Multivessel Coronary Artery Segmentation and Stenosis Localisation using
Ensemble Learning
- URL: http://arxiv.org/abs/2310.17954v1
- Date: Fri, 27 Oct 2023 08:03:12 GMT
- Title: Multivessel Coronary Artery Segmentation and Stenosis Localisation using
Ensemble Learning
- Authors: Muhammad Bilal, Dinis Martinho, Reiner Sim, Adnan Qayyum, Hunaid
Vohra, Massimo Caputo, Taofeek Akinosho, Sofiat Abioye, Zaheer Khan, Waleed
Niaz, Junaid Qadir
- Abstract summary: This study introduces an end-to-end machine learning solution developed as part of our solution for the MICCAI 2023 Automatic Region-based Coronary Artery Disease diagnostics.
It aims to benchmark solutions for multivessel coronary artery segmentation and potential stenotic lesion localisation from X-ray coronary angiograms.
Our solution achieved a mean F1 score of $37.69%$ for coronary artery segmentation, and $39.41%$ for stenosis localisation, positioning our team in the 5th position on both leaderboards.
- Score: 3.656984996633334
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Coronary angiography analysis is a common clinical task performed by
cardiologists to diagnose coronary artery disease (CAD) through an assessment
of atherosclerotic plaque's accumulation. This study introduces an end-to-end
machine learning solution developed as part of our solution for the MICCAI 2023
Automatic Region-based Coronary Artery Disease diagnostics using x-ray
angiography imagEs (ARCADE) challenge, which aims to benchmark solutions for
multivessel coronary artery segmentation and potential stenotic lesion
localisation from X-ray coronary angiograms. We adopted a robust baseline model
training strategy to progressively improve performance, comprising five
successive stages of binary class pretraining, multivessel segmentation,
fine-tuning using class frequency weighted dataloaders, fine-tuning using
F1-based curriculum learning strategy (F1-CLS), and finally multi-target
angiogram view classifier-based collective adaptation. Unlike many other
medical imaging procedures, this task exhibits a notable degree of
interobserver variability. %, making it particularly amenable to automated
analysis. Our ensemble model combines the outputs from six baseline models
using the weighted ensembling approach, which our analysis shows is found to
double the predictive accuracy of the proposed solution. The final prediction
was further refined, targeting the correction of misclassified blobs. Our
solution achieved a mean F1 score of $37.69\%$ for coronary artery
segmentation, and $39.41\%$ for stenosis localisation, positioning our team in
the 5th position on both leaderboards. This work demonstrates the potential of
automated tools to aid CAD diagnosis, guide interventions, and improve the
accuracy of stent injections in clinical settings.
Related papers
- MPSeg : Multi-Phase strategy for coronary artery Segmentation [9.767759441883008]
We present MPSeg, an innovative multi-phase strategy designed for coronary artery segmentation.
Our approach specifically accommodates these structural complexities and adheres to the principles of the SYNTAX Score.
Notably, our approach demonstrated exceptional effectiveness when evaluated in the Automatic Region-based Coronary Artery Disease diagnostics.
arXiv Detail & Related papers (2023-11-17T03:33:09Z) - SSASS: Semi-Supervised Approach for Stenosis Segmentation [9.767759441883008]
The complexity of coronary artery structures combined with the inherent noise in X-ray images poses a considerable challenge to this task.
We introduce a semi-supervised approach for cardiovascular stenosis segmentation.
Our approach demonstrated an exceptional performance in the Automatic Region-based Coronary Artery Disease diagnostics.
arXiv Detail & Related papers (2023-11-17T02:01:19Z) - YOLO-Angio: An Algorithm for Coronary Anatomy Segmentation [13.603729336413833]
We present our solution to the Automatic Region-based Coronary Artery Disease diagnostics using X-ray angiography images (ARCADE) challenge held at MICCAI 2023.
Our three-stage approach combines preprocessing and feature selection by classical computer vision to enhance vessel contrast.
A final segmentation is based on a logic-based approach to reconstruct the coronary tree in a graph-based sorting method.
arXiv Detail & Related papers (2023-10-24T15:02:02Z) - StenUNet: Automatic Stenosis Detection from X-ray Coronary Angiography [5.430434855741553]
The severity of coronary artery disease (CAD) is quantified by the location, degree of narrowing (stenosis) and number of arteries involved.
The MICCAI grand challenge: Automatic Region-based Coronary Artery Disease diagnostics using the X-ray angiography imagEs (ARCADE) curated a dataset with stenosis annotations.
We propose the architecture and algorithm StenUNet to accurately detect stenosis from X-ray Coronary Angiography.
arXiv Detail & Related papers (2023-10-23T14:04:18Z) - Improving Multiple Sclerosis Lesion Segmentation Across Clinical Sites:
A Federated Learning Approach with Noise-Resilient Training [75.40980802817349]
Deep learning models have shown promise for automatically segmenting MS lesions, but the scarcity of accurately annotated data hinders progress in this area.
We introduce a Decoupled Hard Label Correction (DHLC) strategy that considers the imbalanced distribution and fuzzy boundaries of MS lesions.
We also introduce a Centrally Enhanced Label Correction (CELC) strategy, which leverages the aggregated central model as a correction teacher for all sites.
arXiv Detail & Related papers (2023-08-31T00:36:10Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
We propose to leverage transfer learning from large datasets annotated by radiologists, to predict the histological score available on a small annex dataset.
We compare different pretraining methods, namely weakly-supervised and self-supervised ones, to improve the prediction of the cirrhosis.
This method outperforms the baseline classification of the METAVIR score, reaching an AUC of 0.84 and a balanced accuracy of 0.75.
arXiv Detail & Related papers (2023-02-16T17:06:23Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
We propose itvariational knowledge distillation (VKD), which is a new probabilistic inference framework for disease classification based on X-rays.
We demonstrate the effectiveness of our method on three public benchmark datasets with paired X-ray images and EHRs.
arXiv Detail & Related papers (2021-03-19T14:13:56Z) - Automated Deep Learning Analysis of Angiography Video Sequences for
Coronary Artery Disease [4.233200689119682]
The evaluation of obstructions (stenosis) in coronary arteries is currently done by a physician's visual assessment of coronary angiography video sequences.
We report an automated analysis pipeline based on deep learning to rapidly and objectively assess coronary angiograms.
We combined powerful deep learning approaches such as ResNet and U-Net with traditional image processing and geometrical analysis.
arXiv Detail & Related papers (2021-01-29T10:23:49Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
Clinical diagnosis, which aims to assign diagnosis codes for a patient based on the clinical note, plays an essential role in clinical decision-making.
We propose a novel framework to combine the inheritance-guided hierarchical assignment and co-occurrence graph propagation for clinical automatic diagnosis.
arXiv Detail & Related papers (2021-01-27T13:16:51Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.