AGFA-Net: Attention-Guided and Feature-Aggregated Network for Coronary Artery Segmentation using Computed Tomography Angiography
- URL: http://arxiv.org/abs/2406.08724v1
- Date: Thu, 13 Jun 2024 01:04:47 GMT
- Title: AGFA-Net: Attention-Guided and Feature-Aggregated Network for Coronary Artery Segmentation using Computed Tomography Angiography
- Authors: Xinyun Liu, Chen Zhao,
- Abstract summary: We propose an attention-guided, feature-aggregated 3D deep network (AGFA-Net) for coronary artery segmentation using CCTA images.
AGFA-Net leverages attention mechanisms and feature refinement modules to capture salient features and enhance segmentation accuracy.
Evaluation on a dataset comprising 1,000 CCTA scans demonstrates AGFA-Net's superior performance, achieving an average Dice coefficient similarity of 86.74% and a Hausdorff distance of 0.23 mm.
- Score: 5.583495103569884
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Coronary artery disease (CAD) remains a prevalent cardiovascular condition, posing significant health risks worldwide. This pathology, characterized by plaque accumulation in coronary artery walls, leads to myocardial ischemia and various symptoms, including chest pain and shortness of breath. Accurate segmentation of coronary arteries from coronary computed tomography angiography (CCTA) images is crucial for diagnosis and treatment planning. Traditional segmentation methods face challenges in handling low-contrast images and complex anatomical structures. In this study, we propose an attention-guided, feature-aggregated 3D deep network (AGFA-Net) for coronary artery segmentation using CCTA images. AGFA-Net leverages attention mechanisms and feature refinement modules to capture salient features and enhance segmentation accuracy. Evaluation on a dataset comprising 1,000 CCTA scans demonstrates AGFA-Net's superior performance, achieving an average Dice coefficient similarity of 86.74% and a Hausdorff distance of 0.23 mm during 5-fold cross-validation. Ablation studies further validate the effectiveness of the proposed modules, highlighting their contributions to improved segmentation accuracy. Overall, AGFA-Net offers a robust and reliable solution for coronary artery segmentation, addressing challenges posed by varying vessel sizes, complex anatomies, and low image contrast.
Related papers
- Coronary artery segmentation in non-contrast calcium scoring CT images
using deep learning [2.2687766762329886]
We introduce a deep learning algorithm for segmenting coronary arteries in non-contrast cardiac CT images.
We propose a novel method for manual mesh-to-image registration, which is used to create our test-GT.
The experimental study shows that the trained model has significantly higher accuracy than the GT used for training, and leads to the Dice and clDice metrics close to the interrater variability.
arXiv Detail & Related papers (2024-03-04T23:40:02Z) - MPSeg : Multi-Phase strategy for coronary artery Segmentation [9.767759441883008]
We present MPSeg, an innovative multi-phase strategy designed for coronary artery segmentation.
Our approach specifically accommodates these structural complexities and adheres to the principles of the SYNTAX Score.
Notably, our approach demonstrated exceptional effectiveness when evaluated in the Automatic Region-based Coronary Artery Disease diagnostics.
arXiv Detail & Related papers (2023-11-17T03:33:09Z) - SSASS: Semi-Supervised Approach for Stenosis Segmentation [9.767759441883008]
The complexity of coronary artery structures combined with the inherent noise in X-ray images poses a considerable challenge to this task.
We introduce a semi-supervised approach for cardiovascular stenosis segmentation.
Our approach demonstrated an exceptional performance in the Automatic Region-based Coronary Artery Disease diagnostics.
arXiv Detail & Related papers (2023-11-17T02:01:19Z) - Accurate Fine-Grained Segmentation of Human Anatomy in Radiographs via
Volumetric Pseudo-Labeling [66.75096111651062]
We created a large-scale dataset of 10,021 thoracic CTs with 157 labels.
We applied an ensemble of 3D anatomy segmentation models to extract anatomical pseudo-labels.
Our resulting segmentation models demonstrated remarkable performance on CXR.
arXiv Detail & Related papers (2023-06-06T18:01:08Z) - Segmentation and Vascular Vectorization for Coronary Artery by
Geometry-based Cascaded Neural Network [26.88627331841325]
We propose a geometry-based cascaded segmentation method for the coronary artery.
The generated meshes of the coronary artery are continuous and accurate for twisted and sophisticated coronary artery structures.
Our method generates an accurate, intact and smooth coronary artery, devoid of any fragmentations of segmented vessels.
arXiv Detail & Related papers (2023-05-07T07:26:41Z) - Structure-aware registration network for liver DCE-CT images [50.28546654316009]
We propose a novel structure-aware registration method by incorporating structural information of related organs with segmentation-guided deep registration network.
Our proposed method can achieve higher registration accuracy and preserve anatomical structure more effectively than state-of-the-art methods.
arXiv Detail & Related papers (2023-03-08T14:08:56Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Cardiac Segmentation on CT Images through Shape-Aware Contour Attentions [1.212901554957637]
The cardiac organ consists of multiple substructures, i.e., ventricles, atriums, aortas, arteries, veins, and myocardium.
These cardiac substructures are proximate to each other and have indiscernible boundaries.
We introduce a novel model to exploit shape and boundary-aware features.
arXiv Detail & Related papers (2021-05-27T13:54:59Z) - Rethinking the Extraction and Interaction of Multi-Scale Features for
Vessel Segmentation [53.187152856583396]
We propose a novel deep learning model called PC-Net to segment retinal vessels and major arteries in 2D fundus image and 3D computed tomography angiography (CTA) scans.
In PC-Net, the pyramid squeeze-and-excitation (PSE) module introduces spatial information to each convolutional block, boosting its ability to extract more effective multi-scale features.
arXiv Detail & Related papers (2020-10-09T08:22:54Z) - Synergistic Learning of Lung Lobe Segmentation and Hierarchical
Multi-Instance Classification for Automated Severity Assessment of COVID-19
in CT Images [61.862364277007934]
We propose a synergistic learning framework for automated severity assessment of COVID-19 in 3D CT images.
A multi-task deep network (called M$2$UNet) is then developed to assess the severity of COVID-19 patients.
Our M$2$UNet consists of a patch-level encoder, a segmentation sub-network for lung lobe segmentation, and a classification sub-network for severity assessment.
arXiv Detail & Related papers (2020-05-08T03:16:15Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.