論文の概要: Video-based Sequential Bayesian Homography Estimation for Soccer Field Registration
- arxiv url: http://arxiv.org/abs/2311.10361v2
- Date: Sat, 4 May 2024 06:54:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-08 00:25:31.407077
- Title: Video-based Sequential Bayesian Homography Estimation for Soccer Field Registration
- Title(参考訳): サッカー場登録のためのビデオベース連続ベイズホログラフィー推定
- Authors: Paul J. Claasen, J. P. de Villiers,
- Abstract要約: 1つのビデオフレームのホモグラフィーをアフィン変換によって次のビデオフレームに明示的に関連付ける新しいベイズフレームワークが提案されている。
提案手法は,2段階カルマンフィルタを用いて既存の手法を大幅に改善する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: A novel Bayesian framework is proposed, which explicitly relates the homography of one video frame to the next through an affine transformation while explicitly modelling keypoint uncertainty. The literature has previously used differential homography between subsequent frames, but not in a Bayesian setting. In cases where Bayesian methods have been applied, camera motion is not adequately modelled, and keypoints are treated as deterministic. The proposed method, Bayesian Homography Inference from Tracked Keypoints (BHITK), employs a two-stage Kalman filter and significantly improves existing methods. Existing keypoint detection methods may be easily augmented with BHITK. It enables less sophisticated and less computationally expensive methods to outperform the state-of-the-art approaches in most homography evaluation metrics. Furthermore, the homography annotations of the WorldCup and TS-WorldCup datasets have been refined using a custom homography annotation tool that has been released for public use. The refined datasets are consolidated and released as the consolidated and refined WorldCup (CARWC) dataset.
- Abstract(参考訳): キーポイントの不確かさを明示的にモデル化しながら,アフィン変換により映像フレームのホモグラフィーを次へと明示的に関連付ける新しいベイズフレームワークを提案する。
この文献は以前、後のフレーム間の微分ホモグラフィーを使用していたが、ベイズ的な設定では使用しなかった。
ベイズ法が適用された場合、カメラの動きは適切にモデル化されず、キーポイントは決定論的として扱われる。
提案手法は,2段階カルマンフィルタを用いて既存の手法を大幅に改善する。
既存のキーポイント検出方法はBHITKで容易に拡張できる。
これにより、高度で計算コストの低い手法が、ほとんどのホモグラフィー評価指標において最先端の手法より優れている。
さらに、WorldCupとTS-WorldCupデータセットのホモグラフィアノテーションは、公開用にリリースされたカスタムホモグラフィアノテーションツールを使用して洗練されている。
洗練されたデータセットは統合され、統合されたWorldCup(CARWC)データセットとしてリリースされる。
関連論文リスト
- Rethinking Few-shot 3D Point Cloud Semantic Segmentation [62.80639841429669]
本稿では,FS-PCSによる3Dポイント・クラウドセマンティックセマンティックセグメンテーションについて再検討する。
我々は、最先端の2つの重要な問題、前景の漏洩とスパースポイントの分布に焦点をあてる。
これらの問題に対処するために、新しいベンチマークを構築するための標準化されたFS-PCS設定を導入する。
論文 参考訳(メタデータ) (2024-03-01T15:14:47Z) - View Consistent Purification for Accurate Cross-View Localization [59.48131378244399]
本稿では,屋外ロボットのための微細な自己局在化手法を提案する。
提案手法は,既存のクロスビューローカライゼーション手法の限界に対処する。
これは、動的環境における知覚を増強する初めての疎視のみの手法である。
論文 参考訳(メタデータ) (2023-08-16T02:51:52Z) - GPGait: Generalized Pose-based Gait Recognition [11.316545213493223]
ポーズに基づく歩行認識に関する最近の研究は、このような単純な情報を用いてシルエット法に匹敵する結果が得られる可能性を実証している。
データセット間のポーズに基づく手法の一般化能力を向上させるために,textbf Generalized textbfPose-based textbfGait Recognition frameworkを提案する。
論文 参考訳(メタデータ) (2023-03-09T13:17:13Z) - ATCON: Attention Consistency for Vision Models [0.8312466807725921]
注意マップの整合性を改善する教師なしの微調整法を提案する。
Ablation studyではGrad-CAMおよびIntegrated Gradientsについて検討した。
これらの改良された注意マップは、臨床医が視覚モデル予測をよりよく理解するのに役立ちます。
論文 参考訳(メタデータ) (2022-10-18T09:30:20Z) - Real-Time Scene Text Detection with Differentiable Binarization and
Adaptive Scale Fusion [62.269219152425556]
セグメンテーションに基づくシーンテキスト検出手法はシーンテキスト検出分野において大きな注目を集めている。
本稿では,二項化処理をセグメンテーションネットワークに統合する分散二項化(DB)モジュールを提案する。
アダプティブ・スケール・フュージョン (ASF) モジュールは, 異なるスケールの特徴を適応的に融合させることにより, スケールのロバスト性を向上させる。
論文 参考訳(メタデータ) (2022-02-21T15:30:14Z) - Texture image classification based on a pseudo-parabolic diffusion model [0.0]
提案手法は、確立されたベンチマークテクスチャデータベースの分類と、植物種認識の実践的な課題について検証する。
画像の同種領域内では、擬似放物的演算子が、うる限りノイズの多い詳細を滑らかにすることができることで、優れた性能を大いに正当化することができる。
論文 参考訳(メタデータ) (2020-11-14T00:04:07Z) - HSolo: Homography from a single affine aware correspondence [0.0]
Inlier-poor領域に特に適したホモグラフィー推定のための新しい手法を提案する。
特に低い不整合率では,新しいアルゴリズムにより劇的な性能向上が期待できる。
論文 参考訳(メタデータ) (2020-09-10T17:13:23Z) - Deep Keypoint-Based Camera Pose Estimation with Geometric Constraints [80.60538408386016]
連続するフレームから相対的なカメラのポーズを推定することは、視覚計測の基本的な問題である。
本稿では,検出,特徴抽出,マッチング,外乱除去のための学習可能なモジュールで構成されるエンドツーエンドのトレーニング可能なフレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-29T21:41:31Z) - Making Affine Correspondences Work in Camera Geometry Computation [62.7633180470428]
局所的な特徴は、ポイント・ツー・ポイント対応ではなく、リージョン・ツー・リージョンを提供する。
本稿では,全モデル推定パイプラインにおいて,地域間マッチングを効果的に活用するためのガイドラインを提案する。
実験により、アフィンソルバはより高速な実行時にポイントベースソルバに匹敵する精度を達成できることが示された。
論文 参考訳(メタデータ) (2020-07-20T12:07:48Z) - Image Matching across Wide Baselines: From Paper to Practice [80.9424750998559]
局所的な特徴とロバストな推定アルゴリズムの包括的なベンチマークを導入する。
パイプラインのモジュール構造は、さまざまなメソッドの容易な統合、構成、組み合わせを可能にします。
適切な設定で、古典的な解決策は依然として芸術の知覚された状態を上回る可能性があることを示す。
論文 参考訳(メタデータ) (2020-03-03T15:20:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。