Causal Graph in Language Model Rediscovers Cortical Hierarchy in Human
Narrative Processing
- URL: http://arxiv.org/abs/2311.10431v1
- Date: Fri, 17 Nov 2023 10:09:12 GMT
- Title: Causal Graph in Language Model Rediscovers Cortical Hierarchy in Human
Narrative Processing
- Authors: Zhengqi He, Taro Toyoizumi
- Abstract summary: Previous studies have demonstrated that the features of language models can be mapped to fMRI brain activity.
This raises the question: is there a commonality between information processing in language models and the human brain?
To estimate information flow patterns in a language model, we examined the causal relationships between different layers.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding how humans process natural language has long been a vital
research direction. The field of natural language processing (NLP) has recently
experienced a surge in the development of powerful language models. These
models have proven to be invaluable tools for studying another complex system
known to process human language: the brain. Previous studies have demonstrated
that the features of language models can be mapped to fMRI brain activity. This
raises the question: is there a commonality between information processing in
language models and the human brain? To estimate information flow patterns in a
language model, we examined the causal relationships between different layers.
Drawing inspiration from the workspace framework for consciousness, we
hypothesized that features integrating more information would more accurately
predict higher hierarchical brain activity. To validate this hypothesis, we
classified language model features into two categories based on causal network
measures: 'low in-degree' and 'high in-degree'. We subsequently compared the
brain prediction accuracy maps for these two groups. Our results reveal that
the difference in prediction accuracy follows a hierarchical pattern,
consistent with the cortical hierarchy map revealed by activity time constants.
This finding suggests a parallel between how language models and the human
brain process linguistic information.
Related papers
- Brain-Like Language Processing via a Shallow Untrained Multihead Attention Network [16.317199232071232]
Large Language Models (LLMs) have been shown to be effective models of the human language system.
In this work, we investigate the key architectural components driving the surprising alignment of untrained models.
arXiv Detail & Related papers (2024-06-21T12:54:03Z) - Navigating Brain Language Representations: A Comparative Analysis of Neural Language Models and Psychologically Plausible Models [29.50162863143141]
We compare encoding performance of various neural language models and psychologically plausible models.
Surprisingly, our findings revealed that psychologically plausible models outperformed neural language models across diverse contexts.
arXiv Detail & Related papers (2024-04-30T08:48:07Z) - Meta predictive learning model of languages in neural circuits [2.5690340428649328]
We propose a mean-field learning model within the predictive coding framework.
Our model reveals that most of the connections become deterministic after learning.
Our model provides a starting point to investigate the connection among brain computation, next-token prediction and general intelligence.
arXiv Detail & Related papers (2023-09-08T03:58:05Z) - Why can neural language models solve next-word prediction? A
mathematical perspective [53.807657273043446]
We study a class of formal languages that can be used to model real-world examples of English sentences.
Our proof highlights the different roles of the embedding layer and the fully connected component within the neural language model.
arXiv Detail & Related papers (2023-06-20T10:41:23Z) - Joint processing of linguistic properties in brains and language models [14.997785690790032]
We investigate the correspondence between the detailed processing of linguistic information by the human brain versus language models.
We find that elimination of specific linguistic properties results in a significant decrease in brain alignment.
These findings provide clear evidence for the role of specific linguistic information in the alignment between brain and language models.
arXiv Detail & Related papers (2022-12-15T19:13:42Z) - Neural Language Models are not Born Equal to Fit Brain Data, but
Training Helps [75.84770193489639]
We examine the impact of test loss, training corpus and model architecture on the prediction of functional Magnetic Resonance Imaging timecourses of participants listening to an audiobook.
We find that untrained versions of each model already explain significant amount of signal in the brain by capturing similarity in brain responses across identical words.
We suggest good practices for future studies aiming at explaining the human language system using neural language models.
arXiv Detail & Related papers (2022-07-07T15:37:17Z) - Toward a realistic model of speech processing in the brain with
self-supervised learning [67.7130239674153]
Self-supervised algorithms trained on the raw waveform constitute a promising candidate.
We show that Wav2Vec 2.0 learns brain-like representations with as little as 600 hours of unlabelled speech.
arXiv Detail & Related papers (2022-06-03T17:01:46Z) - Long-range and hierarchical language predictions in brains and
algorithms [82.81964713263483]
We show that while deep language algorithms are optimized to predict adjacent words, the human brain would be tuned to make long-range and hierarchical predictions.
This study strengthens predictive coding theory and suggests a critical role of long-range and hierarchical predictions in natural language processing.
arXiv Detail & Related papers (2021-11-28T20:26:07Z) - Model-based analysis of brain activity reveals the hierarchy of language
in 305 subjects [82.81964713263483]
A popular approach to decompose the neural bases of language consists in correlating, across individuals, the brain responses to different stimuli.
Here, we show that a model-based approach can reach equivalent results within subjects exposed to natural stimuli.
arXiv Detail & Related papers (2021-10-12T15:30:21Z) - Low-Dimensional Structure in the Space of Language Representations is
Reflected in Brain Responses [62.197912623223964]
We show a low-dimensional structure where language models and translation models smoothly interpolate between word embeddings, syntactic and semantic tasks, and future word embeddings.
We find that this representation embedding can predict how well each individual feature space maps to human brain responses to natural language stimuli recorded using fMRI.
This suggests that the embedding captures some part of the brain's natural language representation structure.
arXiv Detail & Related papers (2021-06-09T22:59:12Z) - Does injecting linguistic structure into language models lead to better
alignment with brain recordings? [13.880819301385854]
We evaluate whether language models align better with brain recordings if their attention is biased by annotations from syntactic or semantic formalisms.
Our proposed approach enables the evaluation of more targeted hypotheses about the composition of meaning in the brain.
arXiv Detail & Related papers (2021-01-29T14:42:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.