Correlation-Distance Graph Learning for Treatment Response Prediction
from rs-fMRI
- URL: http://arxiv.org/abs/2311.10463v1
- Date: Fri, 17 Nov 2023 11:34:01 GMT
- Title: Correlation-Distance Graph Learning for Treatment Response Prediction
from rs-fMRI
- Authors: Xiatian Zhang, Sisi Zheng, Hubert P. H. Shum, Haozheng Zhang, Nan
Song, Mingkang Song, Hongxiao Jia
- Abstract summary: We propose a graph learning framework that captures comprehensive features by integrating both correlation and distance-based similarity measures under a contrastive loss.
Our experiments on the chronic pain and depersonalization disorder datasets demonstrate that our proposed method outperforms current methods in different scenarios.
- Score: 8.734687343991366
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Resting-state fMRI (rs-fMRI) functional connectivity (FC) analysis provides
valuable insights into the relationships between different brain regions and
their potential implications for neurological or psychiatric disorders.
However, specific design efforts to predict treatment response from rs-fMRI
remain limited due to difficulties in understanding the current brain state and
the underlying mechanisms driving the observed patterns, which limited the
clinical application of rs-fMRI. To overcome that, we propose a graph learning
framework that captures comprehensive features by integrating both correlation
and distance-based similarity measures under a contrastive loss. This approach
results in a more expressive framework that captures brain dynamic features at
different scales and enables more accurate prediction of treatment response.
Our experiments on the chronic pain and depersonalization disorder datasets
demonstrate that our proposed method outperforms current methods in different
scenarios. To the best of our knowledge, we are the first to explore the
integration of distance-based and correlation-based neural similarity into
graph learning for treatment response prediction.
Related papers
- Copula-Linked Parallel ICA: A Method for Coupling Structural and Functional MRI brain Networks [0.5277756703318045]
Prior studies fusing functional MRI (fMRI) and structural MRI (sMRI) have shown the benefits of this approach.
We developed a novel fusion method, by combining deep learning frameworks, copulas and independent component analysis (ICA), named copula linked parallel ICA (CLiP-ICA)
CLiP-ICA effectively captures both strongly and weakly linked sMRI and fMRI networks, including the cerebellum, sensorimotor, visual, cognitive control, and default mode networks.
arXiv Detail & Related papers (2024-10-14T01:35:41Z) - TADM: Temporally-Aware Diffusion Model for Neurodegenerative Progression on Brain MRI [4.414541804340033]
Temporally-Aware Diffusion Model (TADM) learns the distribution of structural changes in terms of intensity differences between scans.
During training, we propose to leverage a pre-trained Brain-Age Estimator (BAE) to refine the model's training process.
Our approach will benefit applications, such as predicting patient outcomes or improving treatments for patients.
arXiv Detail & Related papers (2024-06-18T09:00:49Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
In this study, we first construct the brain-effective network via the dynamic causal model.
We then introduce an interpretable graph learning framework termed Spatio-Temporal Embedding ODE (STE-ODE)
This framework incorporates specifically designed directed node embedding layers, aiming at capturing the dynamic interplay between structural and effective networks.
arXiv Detail & Related papers (2024-05-21T20:37:07Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
We present an interpretable domain grounded solution to recover the activity of several subcortical regions from multichannel EEG data.
We recover individual spatial and time-frequency patterns of scalp EEG predictive of the hemodynamic signal in the subcortical nuclei.
arXiv Detail & Related papers (2022-10-23T15:11:37Z) - A Novel Supervised Contrastive Regression Framework for Prediction of
Neurocognitive Measures Using Multi-Site Harmonized Diffusion MRI
Tractography [13.80649748804573]
Supervised Contrastive Regression (SCR) is a simple yet effective method that allows full supervision for contrastive learning in regression tasks.
SCR performs supervised contrastive representation learning by using the absolute difference between continuous regression labels.
SCR improves the accuracy of neurocognitive score prediction compared to other state-of-the-art methods.
arXiv Detail & Related papers (2022-10-13T23:24:12Z) - DynDepNet: Learning Time-Varying Dependency Structures from fMRI Data
via Dynamic Graph Structure Learning [58.94034282469377]
We propose DynDepNet, a novel method for learning the optimal time-varying dependency structure of fMRI data induced by downstream prediction tasks.
Experiments on real-world fMRI datasets, for the task of sex classification, demonstrate that DynDepNet achieves state-of-the-art results.
arXiv Detail & Related papers (2022-09-27T16:32:11Z) - Learning Personal Representations from fMRIby Predicting Neurofeedback
Performance [52.77024349608834]
We present a deep neural network method for learning a personal representation for individuals performing a self neuromodulation task, guided by functional MRI (fMRI)
The representation is learned by a self-supervised recurrent neural network, that predicts the Amygdala activity in the next fMRI frame given recent fMRI frames and is conditioned on the learned individual representation.
arXiv Detail & Related papers (2021-12-06T10:16:54Z) - Mapping individual differences in cortical architecture using multi-view
representation learning [0.0]
We introduce a novel machine learning method which allows combining the activation-and connectivity-based information respectively measured through task-fMRI and resting-state fMRI.
It combines a multi-view deep autoencoder which is designed to fuse the two fMRI modalities into a joint representation space within which a predictive model is trained to guess a scalar score that characterizes the patient.
arXiv Detail & Related papers (2020-04-01T09:01:25Z) - Towards a predictive spatio-temporal representation of brain data [0.2580765958706854]
We show that fMRI datasets are constituted by complex and highly heterogeneous timeseries.
We compare various modelling techniques from deep learning and geometric deep learning to pave the way for future research.
We hope that our methodological advances can ultimately be clinically and computationally relevant by leading to a more nuanced understanding of the brain dynamics in health and disease.
arXiv Detail & Related papers (2020-02-29T18:49:45Z) - Generalization Bounds and Representation Learning for Estimation of
Potential Outcomes and Causal Effects [61.03579766573421]
We study estimation of individual-level causal effects, such as a single patient's response to alternative medication.
We devise representation learning algorithms that minimize our bound, by regularizing the representation's induced treatment group distance.
We extend these algorithms to simultaneously learn a weighted representation to further reduce treatment group distances.
arXiv Detail & Related papers (2020-01-21T10:16:33Z) - Learning Dynamic and Personalized Comorbidity Networks from Event Data
using Deep Diffusion Processes [102.02672176520382]
Comorbid diseases co-occur and progress via complex temporal patterns that vary among individuals.
In electronic health records we can observe the different diseases a patient has, but can only infer the temporal relationship between each co-morbid condition.
We develop deep diffusion processes to model "dynamic comorbidity networks"
arXiv Detail & Related papers (2020-01-08T15:47:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.