論文の概要: OCT2Confocal: 3D CycleGAN based Translation of Retinal OCT Images to
Confocal Microscopy
- arxiv url: http://arxiv.org/abs/2311.10902v2
- Date: Sun, 26 Nov 2023 20:53:27 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-30 12:45:01.747280
- Title: OCT2Confocal: 3D CycleGAN based Translation of Retinal OCT Images to
Confocal Microscopy
- Title(参考訳): OCT2 Confocal: 3D CycleGANによる網膜OCT画像の共焦点顕微鏡への変換
- Authors: Xin Tian, Nantheera Anantrasirichai, Lindsay Nicholson, Alin Achim
- Abstract要約: 3D CycleGANは、3Dの医療データドメイン間で翻訳し、血管、テクスチャ、細胞の詳細を精度良くキャプチャするフレームワークである。
これは、OCTの固有の3D情報を利用して、共焦点顕微鏡のリッチで詳細な色領域に変換する最初の試みである。
この非侵襲的な網膜共焦点画像の生成は、眼科における診断とモニタリング機能をさらに強化する可能性がある。
- 参考スコア(独自算出の注目度): 12.367828307288105
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Optical coherence tomography (OCT) and confocal microscopy are pivotal in
retinal imaging, each presenting unique benefits and limitations. In vivo OCT
offers rapid, non-invasive imaging but can be hampered by clarity issues and
motion artifacts. Ex vivo confocal microscopy provides high-resolution,
cellular detailed color images but is invasive and poses ethical concerns and
potential tissue damage. To bridge these modalities, we developed a 3D CycleGAN
framework for unsupervised translation of in vivo OCT to ex vivo confocal
microscopy images. Applied to our OCT2Confocal dataset, this framework
effectively translates between 3D medical data domains, capturing vascular,
textural, and cellular details with precision. This marks the first attempt to
exploit the inherent 3D information of OCT and translate it into the rich,
detailed color domain of confocal microscopy. Assessed through quantitative and
qualitative metrics, the 3D CycleGAN framework demonstrates commendable image
fidelity and quality, outperforming existing methods despite the constraints of
limited data. This non-invasive generation of retinal confocal images has the
potential to further enhance diagnostic and monitoring capabilities in
ophthalmology.
- Abstract(参考訳): 光コヒーレンス断層撮影(oct)と共焦点顕微鏡は網膜イメージングにおいて重要な役割を果たす。
in vivo octは高速で非侵襲的なイメージングを提供するが、明快な問題やモーションアーティファクトによって妨げられる。
生体内共焦点顕微鏡は高解像度の細胞色像を提供するが、侵襲的であり、倫理的懸念と潜在的な組織損傷をもたらす。
これらのモダリティを橋渡しするために,生体共焦点顕微鏡画像へのOCTの教師なし翻訳のための3D CycleGANフレームワークを開発した。
OCT2Confocalのデータセットに適用すると、このフレームワークは3Dの医療データドメイン間で効果的に翻訳され、血管、テクスチャ、細胞の詳細を精度良くキャプチャする。
これは、octの固有の3d情報を活用し、共焦点顕微鏡のリッチで詳細な色領域に変換する最初の試みである。
3D CycleGANフレームワークは、量的および質的なメトリクスを通じて評価され、圧縮可能な画像の忠実さと品質を示し、制限されたデータの制約にもかかわらず既存の手法より優れている。
この非侵襲的な網膜共焦点画像の生成は、眼科における診断とモニタリング機能をさらに強化する可能性がある。
関連論文リスト
- 3D-CT-GPT: Generating 3D Radiology Reports through Integration of Large Vision-Language Models [51.855377054763345]
本稿では,VQAに基づく医用視覚言語モデルである3D-CT-GPTについて紹介する。
パブリックデータセットとプライベートデータセットの両方の実験により、3D-CT-GPTはレポートの正確さと品質という点で既存の手法を著しく上回っていることが示された。
論文 参考訳(メタデータ) (2024-09-28T12:31:07Z) - OCTCube: A 3D foundation model for optical coherence tomography that improves cross-dataset, cross-disease, cross-device and cross-modality analysis [11.346324975034051]
OCTCubeは、26,605個の3D OCTボリュームで事前訓練された3Dファンデーションモデルである。
インダクティブとクロスデータセットの両方の設定で8つの網膜疾患を予測する場合、2Dモデルよりも優れています。
また、クロスデバイス予測や、糖尿病や高血圧などの全身疾患の予測に優れたパフォーマンスを示す。
論文 参考訳(メタデータ) (2024-08-20T22:55:19Z) - The Quest for Early Detection of Retinal Disease: 3D CycleGAN-based Translation of Optical Coherence Tomography into Confocal Microscopy [11.321411104729002]
生体内OCTを生体内共焦点顕微鏡画像に変換するために, 教師なし3D CycleGANに基づく新しいフレームワークを提案する。
これは、OCTの固有の3D情報を利用して、共焦点顕微鏡のリッチで詳細な色領域に変換する最初の試みである。
論文 参考訳(メタデータ) (2024-08-07T21:13:49Z) - DiffuX2CT: Diffusion Learning to Reconstruct CT Images from Biplanar X-Rays [41.393567374399524]
条件拡散過程として超スパースX線からのCT再構成をモデル化したDiffuX2CTを提案する。
これにより、DiffuX2CTは2次元X線から3次元構造情報を復元できる構造制御可能な再構成を実現する。
コントリビューションとして,LumbarVと呼ばれる実世界の腰椎CTデータセットを新しいベンチマークとして収集し,X線からのCT再構成の臨床的意義と性能を検証した。
論文 参考訳(メタデータ) (2024-07-18T14:20:04Z) - μ-Net: A Deep Learning-Based Architecture for μ-CT Segmentation [2.012378666405002]
X線計算マイクロトモグラフィー(mu-CT)は、医学および生物学的サンプルの内部解剖の高解像度な3D画像を生成する非破壊的手法である。
3D画像から関連情報を抽出するには、興味のある領域のセマンティックセグメンテーションが必要である。
本稿では、畳み込みニューラルネットワーク(CNN)を用いて、Carassius auratusの心臓の完全な形態を自動分割する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-24T15:29:08Z) - CT-GLIP: 3D Grounded Language-Image Pretraining with CT Scans and Radiology Reports for Full-Body Scenarios [53.94122089629544]
我々は,CT-GLIP(Grounded Language- Image Pretraining with CT scans)を導入する。
本手法は,104臓器にわたる17,702症例を対象に,44,011例の臓器レベルの視覚テキストペアからなるマルチモーダルCTデータセットを用いて訓練し,自然言語を用いて臓器と異常をゼロショットで識別できることを実証した。
論文 参考訳(メタデータ) (2024-04-23T17:59:01Z) - Super-resolution of biomedical volumes with 2D supervision [84.5255884646906]
超解像のための仮設スライス拡散は、生物学的標本のすべての空間次元にわたるデータ生成分布の固有同値性を利用する。
我々は,高解像度2次元画像の高速取得を特徴とするSliceRの組織学的刺激(SRH)への応用に着目する。
論文 参考訳(メタデータ) (2024-04-15T02:41:55Z) - Multi-View Vertebra Localization and Identification from CT Images [57.56509107412658]
我々は,CT画像からの多視点椎体局在と同定を提案する。
本研究では,3次元問題を異なる視点における2次元局所化および識別タスクに変換する。
本手法は,多視点グローバル情報を自然に学習することができる。
論文 参考訳(メタデータ) (2023-07-24T14:43:07Z) - Deep learning network to correct axial and coronal eye motion in 3D OCT
retinal imaging [65.47834983591957]
深層学習に基づくニューラルネットワークを用いて,OCTの軸運動とコロナ運動のアーチファクトを1つのスキャンで補正する。
実験結果から, 提案手法は動作アーチファクトを効果的に補正し, 誤差が他の方法よりも小さいことを示す。
論文 参考訳(メタデータ) (2023-05-27T03:55:19Z) - nnUNet RASPP for Retinal OCT Fluid Detection, Segmentation and
Generalisation over Variations of Data Sources [25.095695898777656]
我々は、複数のデバイスベンダーの画像間で一貫した高パフォーマンスを持つnnUNetの2つの変種を提案する。
このアルゴリズムはMICCAI 2017 RETOUCHチャレンジデータセットで検証された。
実験の結果,我々のアルゴリズムは最先端のアルゴリズムよりも優れていた。
論文 参考訳(メタデータ) (2023-02-25T23:47:23Z) - Automated Model Design and Benchmarking of 3D Deep Learning Models for
COVID-19 Detection with Chest CT Scans [72.04652116817238]
3D胸部CTスキャン分類のための3D DLモデルを自動的に検索するための差別化可能なニューラルネットワーク探索(DNAS)フレームワークを提案する。
また,我々のモデルのクラスアクティベーションマッピング(cam)技術を利用して,結果の解釈可能性を提供する。
論文 参考訳(メタデータ) (2021-01-14T03:45:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。