論文の概要: μ-Net: A Deep Learning-Based Architecture for μ-CT Segmentation
- arxiv url: http://arxiv.org/abs/2406.16724v1
- Date: Mon, 24 Jun 2024 15:29:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-25 14:15:21.812282
- Title: μ-Net: A Deep Learning-Based Architecture for μ-CT Segmentation
- Title(参考訳): μ-Net:μ-CTセグメンテーションのためのディープラーニングベースのアーキテクチャ
- Authors: Pierangela Bruno, Edoardo De Rose, Carlo Adornetto, Francesco Calimeri, Sandro Donato, Raffaele Giuseppe Agostino, Daniela Amelio, Riccardo Barberi, Maria Carmela Cerra, Maria Caterina Crocco, Mariacristina Filice, Raffaele Filosa, Gianluigi Greco, Sandra Imbrogno, Vincenzo Formoso,
- Abstract要約: X線計算マイクロトモグラフィー(mu-CT)は、医学および生物学的サンプルの内部解剖の高解像度な3D画像を生成する非破壊的手法である。
3D画像から関連情報を抽出するには、興味のある領域のセマンティックセグメンテーションが必要である。
本稿では、畳み込みニューラルネットワーク(CNN)を用いて、Carassius auratusの心臓の完全な形態を自動分割する新しいフレームワークを提案する。
- 参考スコア(独自算出の注目度): 2.012378666405002
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: X-ray computed microtomography ({\mu}-CT) is a non-destructive technique that can generate high-resolution 3D images of the internal anatomy of medical and biological samples. These images enable clinicians to examine internal anatomy and gain insights into the disease or anatomical morphology. However, extracting relevant information from 3D images requires semantic segmentation of the regions of interest, which is usually done manually and results time-consuming and tedious. In this work, we propose a novel framework that uses a convolutional neural network (CNN) to automatically segment the full morphology of the heart of Carassius auratus. The framework employs an optimized 2D CNN architecture that can infer a 3D segmentation of the sample, avoiding the high computational cost of a 3D CNN architecture. We tackle the challenges of handling large and high-resoluted image data (over a thousand pixels in each dimension) and a small training database (only three samples) by proposing a standard protocol for data normalization and processing. Moreover, we investigate how the noise, contrast, and spatial resolution of the sample and the training of the architecture are affected by the reconstruction technique, which depends on the number of input images. Experiments show that our framework significantly reduces the time required to segment new samples, allowing a faster microtomography analysis of the Carassius auratus heart shape. Furthermore, our framework can work with any bio-image (biological and medical) from {\mu}-CT with high-resolution and small dataset size
- Abstract(参考訳): X線計算マイクロトモグラフィー ({\mu}-CT) は、医学および生物学的試料の内部解剖の高解像度な3次元画像を生成する非破壊的手法である。
これらの画像は、臨床医が内部解剖を調べ、疾患や解剖学的形態に関する洞察を得ることを可能にする。
しかし、3D画像から関連情報を抽出するには、通常手作業で行われる関心領域のセマンティックセグメンテーションが必要である。
本研究では、畳み込みニューラルネットワーク(CNN)を用いて、Carassius auratusの心臓の完全な形態を自動分割する新しいフレームワークを提案する。
このフレームワークは、最適化された2D CNNアーキテクチャを用いて、サンプルの3Dセグメンテーションを推測し、3D CNNアーキテクチャの計算コストが高いことを回避している。
我々は,データ正規化と処理のための標準プロトコルを提案することにより,大規模かつ高解像度の画像データ(各次元に1000ピクセル以上)と小さなトレーニングデータベース(3つのサンプルのみ)を扱うという課題に対処する。
さらに, サンプルの雑音, コントラスト, 空間分解能, およびアーキテクチャの訓練が, 入力画像数に依存する再構成手法の影響について検討した。
実験の結果,本フレームワークは新たな試料の分画に要する時間を著しく短縮し,より高速なカラシウス心形態のマイクロトモグラフィー解析を可能にした。
さらに、我々のフレームワークは、高解像度で小さなデータセットサイズで、mu}-CTのあらゆるバイオイメージ(生物学的および医学的)と連携できる。
関連論文リスト
- nnMamba: 3D Biomedical Image Segmentation, Classification and Landmark
Detection with State Space Model [24.955052600683423]
本稿では、CNNの強みとステートスペースシーケンスモデル(SSM)の高度な長距離モデリング機能を統合する新しいアーキテクチャであるnnMambaを紹介する。
6つのデータセットの実験では、3D画像のセグメンテーション、分類、ランドマーク検出など、一連の困難なタスクにおいて、nnMambaが最先端のメソッドよりも優れていることが示されている。
論文 参考訳(メタデータ) (2024-02-05T21:28:47Z) - Multi-View Vertebra Localization and Identification from CT Images [57.56509107412658]
我々は,CT画像からの多視点椎体局在と同定を提案する。
本研究では,3次元問題を異なる視点における2次元局所化および識別タスクに変換する。
本手法は,多視点グローバル情報を自然に学習することができる。
論文 参考訳(メタデータ) (2023-07-24T14:43:07Z) - Attentive Symmetric Autoencoder for Brain MRI Segmentation [56.02577247523737]
視覚変換器(ViT)をベースとした3次元脳MRIセグメンテーションタスクのための新しいアテンテーティブシンメトリオートエンコーダを提案する。
事前学習の段階では、提案するオートエンコーダがより注意を払って、勾配測定値に従って情報パッチを再構築する。
実験の結果,提案手法は最先端の自己教師付き学習法や医用画像分割モデルよりも優れていた。
論文 参考訳(メタデータ) (2022-09-19T09:43:19Z) - Slice-level Detection of Intracranial Hemorrhage on CT Using Deep
Descriptors of Adjacent Slices [0.31317409221921133]
そこで本研究では,隣接するスライスのディスクリプタに基づいて,CTスキャンでエンフスライスレベルの分類器を訓練する新しい手法を提案する。
我々は、RSNA頭蓋内出血データセットの課題における、最高のパフォーマンスソリューションの上位4%において、単一のモデルを得る。
提案手法は汎用的であり,MRIなどの他の3次元診断タスクにも適用可能である。
論文 参考訳(メタデータ) (2022-08-05T23:20:37Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
本稿では,2ストリームグラフ畳み込みネットワーク(TSGCN)を提案する。
TSGCNは3次元歯(表面)セグメンテーションにおいて最先端の方法よりも優れています。
論文 参考訳(メタデータ) (2022-04-19T10:41:09Z) - QU-net++: Image Quality Detection Framework for Segmentation of 3D
Medical Image Stacks [0.9594432031144714]
U-net++モデルを用いて3次元画像スタックから医用画像の品質を評価する2段階自動評価手法を提案する。
検出された画像は、セマンティックセグメンテーションのためにU-net++モデルをさらに微調整するために使用することができる。
論文 参考訳(メタデータ) (2021-10-27T05:28:02Z) - A modular U-Net for automated segmentation of X-ray tomography images in
composite materials [0.0]
ディープラーニングは、物質科学の応用を含む多くの画像処理タスクで成功している。
本稿では, 3相ガラス繊維強化ポリアミド66の3次元トモグラフィー画像の分割を行うために, UNetのモジュラー解釈を提案し, 訓練した。
注釈付き層は10層に過ぎず, 浅いU-Netを使用すれば, より深い層よりも優れた結果が得られることが観察された。
論文 参考訳(メタデータ) (2021-07-15T17:15:24Z) - Automatic size and pose homogenization with spatial transformer network
to improve and accelerate pediatric segmentation [51.916106055115755]
空間変換器ネットワーク(STN)を利用することにより、ポーズとスケール不変の新たなCNNアーキテクチャを提案する。
私たちのアーキテクチャは、トレーニング中に一緒に見積もられる3つのシーケンシャルモジュールで構成されています。
腹部CTスキャナーを用いた腎および腎腫瘍の分節法について検討した。
論文 参考訳(メタデータ) (2021-07-06T14:50:03Z) - Reducing Textural Bias Improves Robustness of Deep Segmentation CNNs [8.736194193307451]
自然画像の最近の知見は、深いニューラルモデルは、画像分類タスクを実行する際に、テクスチャバイアスを示す可能性があることを示唆している。
本研究の目的は, 深いセグメンテーションモデルの堅牢性と伝達性を高めるために, テクスチャバイアス現象に対処する方法を検討することである。
論文 参考訳(メタデータ) (2020-11-30T18:29:53Z) - Fed-Sim: Federated Simulation for Medical Imaging [131.56325440976207]
本稿では、2つの学習可能なニューラルモジュールからなる物理駆動型生成手法を提案する。
データ合成フレームワークは、複数のデータセットの下流セグメンテーション性能を改善する。
論文 参考訳(メタデータ) (2020-09-01T19:17:46Z) - Hierarchical Amortized Training for Memory-efficient High Resolution 3D
GAN [52.851990439671475]
本稿では,高解像度な3D画像を生成することができる新しいエンドツーエンドGANアーキテクチャを提案する。
トレーニングと推論の異なる構成を使用することで、この目標を達成する。
3次元胸郭CTと脳MRIの実験により、我々のアプローチは画像生成における最先端技術より優れていることが示された。
論文 参考訳(メタデータ) (2020-08-05T02:33:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。