論文の概要: Equivariant Neural Operator Learning with Graphon Convolution
- arxiv url: http://arxiv.org/abs/2311.10908v1
- Date: Fri, 17 Nov 2023 23:28:22 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-22 13:31:29.180155
- Title: Equivariant Neural Operator Learning with Graphon Convolution
- Title(参考訳): 図形畳み込みを用いた同変ニューラル演算子学習
- Authors: Chaoran Cheng, Jian Peng
- Abstract要約: 本稿では3次元ユークリッド空間における連続関数間の写像を学習するための学習係数スキームと残留演算子層を結合した一般アーキテクチャを提案する。
- 参考スコア(独自算出の注目度): 12.059797539633506
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a general architecture that combines the coefficient learning
scheme with a residual operator layer for learning mappings between continuous
functions in the 3D Euclidean space. Our proposed model is guaranteed to
achieve SE(3)-equivariance by design. From the graph spectrum view, our method
can be interpreted as convolution on graphons (dense graphs with infinitely
many nodes), which we term InfGCN. By leveraging both the continuous graphon
structure and the discrete graph structure of the input data, our model can
effectively capture the geometric information while preserving equivariance.
Through extensive experiments on large-scale electron density datasets, we
observed that our model significantly outperformed the current state-of-the-art
architectures. Multiple ablation studies were also carried out to demonstrate
the effectiveness of the proposed architecture.
- Abstract(参考訳): 3次元ユークリッド空間における連続関数間の写像を学習するために,係数学習スキームと残留演算子層を組み合わせた一般アーキテクチャを提案する。
提案モデルでは,SE(3)-等分散を設計により達成することが保証されている。
グラフスペクトルの観点からは、この手法はinfgcnと呼ぶグラフオン(無限個のノードを持つデンスグラフ)の畳み込みとして解釈できる。
連続グラフ構造と入力データの離散グラフ構造の両方を利用することで,等価性を維持しつつ,幾何学的情報を効果的に捉えることができる。
大規模電子密度データセットに関する広範な実験を通じて、我々のモデルが現在の最先端アーキテクチャを著しく上回っていることを観察した。
提案アーキテクチャの有効性を示すために,複数のアブレーション実験を行った。
関連論文リスト
- Improving embedding of graphs with missing data by soft manifolds [51.425411400683565]
グラフ埋め込みの信頼性は、連続空間の幾何がグラフ構造とどの程度一致しているかに依存する。
我々は、この問題を解決することができる、ソフト多様体と呼ばれる新しい多様体のクラスを導入する。
グラフ埋め込みにソフト多様体を用いることで、複雑なデータセット上のデータ解析における任意のタスクを追求するための連続空間を提供できる。
論文 参考訳(メタデータ) (2023-11-29T12:48:33Z) - Graph Neural Network for Stress Predictions in Stiffened Panels Under
Uniform Loading [0.0]
グラフニューラルネットワーク(Graph Neural Network, GNN)は、グラフとして表現可能なデータを処理するニューラルネットワークの一種である。
本研究では,3次元強化パネルの効率的な表現のための新しいグラフ埋め込み手法を提案する。
論文 参考訳(メタデータ) (2023-09-22T17:34:20Z) - GrannGAN: Graph annotation generative adversarial networks [72.66289932625742]
本稿では,高次元分布をモデル化し,グラフスケルトンと整合した複雑な関係特徴構造を持つデータの新しい例を生成することの問題点を考察する。
提案するモデルは,タスクを2つのフェーズに分割することで,各データポイントのグラフ構造に制約されたデータ特徴を生成する問題に対処する。
第一に、与えられたグラフのノードに関連する機能の分布をモデル化し、第二に、ノードのフィーチャに条件付きでエッジ機能を補完する。
論文 参考訳(メタデータ) (2022-12-01T11:49:07Z) - Latent Graph Inference using Product Manifolds [0.0]
遅延グラフ学習のための離散微分可能グラフモジュール(dDGM)を一般化する。
我々の新しいアプローチは、幅広いデータセットでテストされ、元のdDGMモデルよりも優れています。
論文 参考訳(メタデータ) (2022-11-26T22:13:06Z) - Graph Kernel Neural Networks [53.91024360329517]
本稿では、グラフ上の内部積を計算するカーネル関数であるグラフカーネルを用いて、標準畳み込み演算子をグラフ領域に拡張することを提案する。
これにより、入力グラフの埋め込みを計算する必要のない完全に構造的なモデルを定義することができる。
私たちのアーキテクチャでは,任意の種類のグラフカーネルをプラグインすることが可能です。
論文 参考訳(メタデータ) (2021-12-14T14:48:08Z) - Dense Graph Convolutional Neural Networks on 3D Meshes for 3D Object
Segmentation and Classification [0.0]
本稿では3次元メッシュ上でのグラフ畳み込みニューラルネットワーク(GCN)の設計について述べる。
メッシュの顔を基本処理単位とし、各ノードが顔に対応するグラフとして3Dメッシュを表現する。
論文 参考訳(メタデータ) (2021-06-30T02:17:16Z) - Learning non-Gaussian graphical models via Hessian scores and triangular
transport [6.308539010172309]
連続分布と非ガウス分布のマルコフ構造を学習するアルゴリズムを提案する。
このアルゴリズムは三角トランスポートマップによって誘導される決定論的結合を用いて密度を推定し、グラフのスパース性を明らかにするために地図内のスパース構造を反復的に活用する。
論文 参考訳(メタデータ) (2021-01-08T16:42:42Z) - Mix Dimension in Poincar\'{e} Geometry for 3D Skeleton-based Action
Recognition [57.98278794950759]
グラフ畳み込みネットワーク(GCN)はすでに、不規則なデータをモデル化する強力な能力を実証している。
本稿では,ポアンカー幾何学を用いて定義した空間時空間GCNアーキテクチャを提案する。
提案手法を,現在最大規模の2つの3次元データセット上で評価する。
論文 参考訳(メタデータ) (2020-07-30T18:23:18Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
本稿では,テンソルで表されるグラフの集合に関連するデータから,スケーラブルな半教師付き学習(SSL)を実現するためのテンソルグラフ畳み込みネットワーク(TGCN)を提案する。
提案アーキテクチャは、標準的なGCNと比較して大幅に性能が向上し、最先端の敵攻撃に対処し、タンパク質間相互作用ネットワーク上でのSSL性能が著しく向上する。
論文 参考訳(メタデータ) (2020-03-15T02:33:21Z) - Embedding Graph Auto-Encoder for Graph Clustering [90.8576971748142]
グラフ自動エンコーダ(GAE)モデルは、半教師付きグラフ畳み込みネットワーク(GCN)に基づく
我々は、グラフクラスタリングのための特定のGAEベースのモデルを設計し、その理論、すなわち、埋め込みグラフオートエンコーダ(EGAE)と整合する。
EGAEは1つのエンコーダと2つのデコーダで構成される。
論文 参考訳(メタデータ) (2020-02-20T09:53:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。