Tactics2D: A Highly Modular and Extensible Simulator for Driving Decision-making
- URL: http://arxiv.org/abs/2311.11058v3
- Date: Mon, 20 May 2024 10:13:53 GMT
- Title: Tactics2D: A Highly Modular and Extensible Simulator for Driving Decision-making
- Authors: Yueyuan Li, Songan Zhang, Mingyang Jiang, Xingyuan Chen, Yeqiang Qian, Chunxiang Wang, Ming Yang,
- Abstract summary: Existing simulators often fall short in diverse scenarios or interactive behavior models for traffic participants.
Tactics2D adopts a modular approach to traffic scenario construction, encompassing road elements, traffic regulations, behavior models, physics simulations for vehicles, and event detection mechanisms.
Users can effectively evaluate the performance of driving decision-making models across various scenarios by leveraging both public datasets and user-collected real-world data.
- Score: 24.795867304772404
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Simulation is a prospective method for generating diverse and realistic traffic scenarios to aid in the development of driving decision-making systems. However, existing simulators often fall short in diverse scenarios or interactive behavior models for traffic participants. This deficiency underscores the need for a flexible, reliable, user-friendly open-source simulator. Addressing this challenge, Tactics2D adopts a modular approach to traffic scenario construction, encompassing road elements, traffic regulations, behavior models, physics simulations for vehicles, and event detection mechanisms. By integrating numerous commonly utilized algorithms and configurations, Tactics2D empowers users to construct their driving scenarios effortlessly, just like assembling building blocks. Users can effectively evaluate the performance of driving decision-making models across various scenarios by leveraging both public datasets and user-collected real-world data. For access to the source code and community support, please visit the official GitHub page for Tactics2D at https://github.com/WoodOxen/Tactics2D.
Related papers
- SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries [94.84458417662407]
We introduce SAFE-SIM, a controllable closed-loop safety-critical simulation framework.
Our approach yields two distinct advantages: 1) generating realistic long-tail safety-critical scenarios that closely reflect real-world conditions, and 2) providing controllable adversarial behavior for more comprehensive and interactive evaluations.
We validate our framework empirically using the nuScenes and nuPlan datasets across multiple planners, demonstrating improvements in both realism and controllability.
arXiv Detail & Related papers (2023-12-31T04:14:43Z) - Waymax: An Accelerated, Data-Driven Simulator for Large-Scale Autonomous
Driving Research [76.93956925360638]
Waymax is a new data-driven simulator for autonomous driving in multi-agent scenes.
It runs entirely on hardware accelerators such as TPUs/GPUs and supports in-graph simulation for training.
We benchmark a suite of popular imitation and reinforcement learning algorithms with ablation studies on different design decisions.
arXiv Detail & Related papers (2023-10-12T20:49:15Z) - TrafficBots: Towards World Models for Autonomous Driving Simulation and
Motion Prediction [149.5716746789134]
We show data-driven traffic simulation can be formulated as a world model.
We present TrafficBots, a multi-agent policy built upon motion prediction and end-to-end driving.
Experiments on the open motion dataset show TrafficBots can simulate realistic multi-agent behaviors.
arXiv Detail & Related papers (2023-03-07T18:28:41Z) - Generative AI-empowered Simulation for Autonomous Driving in Vehicular
Mixed Reality Metaverses [130.15554653948897]
In vehicular mixed reality (MR) Metaverse, distance between physical and virtual entities can be overcome.
Large-scale traffic and driving simulation via realistic data collection and fusion from the physical world is difficult and costly.
We propose an autonomous driving architecture, where generative AI is leveraged to synthesize unlimited conditioned traffic and driving data in simulations.
arXiv Detail & Related papers (2023-02-16T16:54:10Z) - BITS: Bi-level Imitation for Traffic Simulation [38.28736985320897]
We take a data-driven approach and propose a method that can learn to generate traffic behaviors from real-world driving logs.
We empirically validate our method, named Bi-level Imitation for Traffic Simulation (BITS), with scenarios from two large-scale driving datasets.
As part of our core contributions, we develop and open source a software tool that unifies data formats across different driving datasets.
arXiv Detail & Related papers (2022-08-26T02:17:54Z) - A Hierarchical Pedestrian Behavior Model to Generate Realistic Human
Behavior in Traffic Simulation [11.525073205608681]
We present a hierarchical pedestrian behavior model that generates high-level decisions through the use of behavior trees.
A full implementation of our work is integrated into GeoScenario Server, a scenario definition and execution engine.
Our model is shown to replicate the real-world pedestrians' trajectories with a high degree of fidelity and a decision-making accuracy of 98% or better.
arXiv Detail & Related papers (2022-06-01T02:04:38Z) - VISTA 2.0: An Open, Data-driven Simulator for Multimodal Sensing and
Policy Learning for Autonomous Vehicles [131.2240621036954]
We present VISTA, an open source, data-driven simulator that integrates multiple types of sensors for autonomous vehicles.
Using high fidelity, real-world datasets, VISTA represents and simulates RGB cameras, 3D LiDAR, and event-based cameras.
We demonstrate the ability to train and test perception-to-control policies across each of the sensor types and showcase the power of this approach via deployment on a full scale autonomous vehicle.
arXiv Detail & Related papers (2021-11-23T18:58:10Z) - TrafficSim: Learning to Simulate Realistic Multi-Agent Behaviors [74.67698916175614]
We propose TrafficSim, a multi-agent behavior model for realistic traffic simulation.
In particular, we leverage an implicit latent variable model to parameterize a joint actor policy.
We show TrafficSim generates significantly more realistic and diverse traffic scenarios as compared to a diverse set of baselines.
arXiv Detail & Related papers (2021-01-17T00:29:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.