論文の概要: CueGCL: Cluster-aware Personalized Self-Training for Unsupervised Graph Contrastive Learning
- arxiv url: http://arxiv.org/abs/2311.11073v2
- Date: Tue, 23 Sep 2025 19:49:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-25 20:53:19.42981
- Title: CueGCL: Cluster-aware Personalized Self-Training for Unsupervised Graph Contrastive Learning
- Title(参考訳): CueGCL:教師なしグラフコントラスト学習のためのクラスタ対応パーソナライズされた自己学習
- Authors: Yuecheng Li, Lele Fu, Sheng Huang, Chuan Chen, Lei Yang, Zibin Zheng,
- Abstract要約: 本稿ではクラスタリング結果とノード表現を協調的に学習するクラスタ対応グラフコントラスト学習フレームワーク(CueGCL)を提案する。
具体的には、教師なしシナリオのためのパーソナライズされた自己学習(PeST)戦略を設計し、クラスタレベルのパーソナライズされた正確な情報をモデルが取得できるようにする。
本稿では,モデルの有効性を理論的に実証し,クラスタ構造が著しく識別可能な埋め込み空間が得られることを示した。
- 参考スコア(独自算出の注目度): 49.88192702588169
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, graph contrastive learning (GCL) has emerged as one of the optimal solutions for node-level and supervised tasks. However, for structure-related and unsupervised tasks such as graph clustering, current GCL algorithms face difficulties acquiring the necessary cluster-level information, resulting in poor performance. In addition, general unsupervised GCL improves the performance of downstream tasks by increasing the number of negative samples, which leads to severe class collision and unfairness of graph clustering. To address the above issues, we propose a Cluster-aware Graph Contrastive Learning Framework (CueGCL) to jointly learn clustering results and node representations. Specifically, we design a personalized self-training (PeST) strategy for unsupervised scenarios, which enables our model to capture precise cluster-level personalized information. With the benefit of the PeST, we alleviate class collision and unfairness without sacrificing the overall model performance. Furthermore, aligned graph clustering (AGC) is employed to obtain the cluster partition, where we align the clustering space of our downstream task with that in PeST to achieve more consistent node embeddings. Finally, we theoretically demonstrate the effectiveness of our model, showing it yields an embedding space with a significantly discernible cluster structure. Extensive experimental results also show our CueGCL exhibits state-of-the-art performance on five benchmark datasets with different scales.
- Abstract(参考訳): 近年,ノードレベルおよび教師付きタスクの最適解としてグラフコントラスト学習(GCL)が登場している。
しかし、グラフクラスタリングのような構造関連や教師なしのタスクでは、現在のGCLアルゴリズムは必要なクラスタレベルの情報を取得するのに困難に直面し、性能が低下する。
さらに、一般的な教師なしGCLは、負のサンプルの数を増やして下流タスクの性能を改善し、グラフクラスタリングの深刻なクラス衝突と不公平をもたらす。
上記の問題に対処するため,クラスタリング結果とノード表現を協調的に学習するクラスタ対応グラフコントラスト学習フレームワーク(CueGCL)を提案する。
具体的には、教師なしシナリオのためのパーソナライズされた自己学習(PeST)戦略を設計し、クラスタレベルのパーソナライズされた正確な情報をモデルが取得できるようにする。
PeSTの利点により、モデル全体の性能を犠牲にすることなく、クラス衝突と不公平を緩和する。
さらに、クラスタ分割を得るためにアライメントグラフクラスタリング(AGC)を使用し、より一貫性のあるノード埋め込みを実現するために、下流タスクのクラスタリング空間をPeSTのそれと整合させる。
最後に,本モデルの有効性を理論的に実証し,クラスタ構造が著しく識別可能な埋め込み空間が得られることを示す。
CueGCLは、異なるスケールの5つのベンチマークデータセットに対して、最先端のパフォーマンスを示す。
関連論文リスト
- Graph Structure Refinement with Energy-based Contrastive Learning [56.957793274727514]
グラフの構造と表現を学習するための生成訓練と識別訓練のジョイントに基づく教師なし手法を提案する。
本稿では,ECL-GSR(Energy-based Contrastive Learning)によるグラフ構造再構成(GSR)フレームワークを提案する。
ECL-GSRは、主要なベースラインに対するサンプルやメモリの少ない高速なトレーニングを実現し、下流タスクの単純さと効率性を強調している。
論文 参考訳(メタデータ) (2024-12-20T04:05:09Z) - Revisiting Self-Supervised Heterogeneous Graph Learning from Spectral Clustering Perspective [52.662463893268225]
自己教師付きヘテロジニアスグラフ学習(SHGL)は様々なシナリオにおいて有望な可能性を示している。
既存のSHGLメソッドには2つの大きな制限がある。
ランクと二重整合性制約によって強化された新しいフレームワークを導入する。
論文 参考訳(メタデータ) (2024-12-01T09:33:20Z) - A Dual Adaptive Assignment Approach for Robust Graph-Based Clustering [18.614842530666834]
我々は、ロバストグラフベースクラスタリング(RDSA)のためのDual Adaptive Assignment Approachと呼ばれる新しいフレームワークを導入する。
RDSAは3つの主要なコンポーネントから構成される: (i) グラフのトポロジ的特徴とノード属性を効果的に統合するノード埋め込みモジュール、 (ii) ノード割り当てに親和性行列を利用することでグラフモジュラリティを改善する構造ベースのソフトアサインモジュール、 (iii) コミュニティランドマークを識別し、モデルの堅牢性を高めるためにノード割り当てを洗練させるノードベースのソフトアサインモジュール。
この結果から,RDSAはクラスタリングの有効性やロバスト性,適応性など,グラフの種類によって堅牢なクラスタリングを実現していることが明らかとなった。
論文 参考訳(メタデータ) (2024-10-29T05:18:34Z) - Multi-Task Curriculum Graph Contrastive Learning with Clustering Entropy Guidance [25.5510013711661]
本稿ではクラスタリング誘導型Curriculum Graph contrastive Learning(CCGL)フレームワークを提案する。
CCGLは以下のグラフ拡張とコントラスト学習のガイダンスとしてクラスタリングエントロピーを使用している。
実験の結果,CCGLは最先端の競合に比べて優れた性能を示した。
論文 参考訳(メタデータ) (2024-08-22T02:18:47Z) - Self-Supervised Contrastive Graph Clustering Network via Structural Information Fusion [15.293684479404092]
CGCNと呼ばれる新しいディープグラフクラスタリング手法を提案する。
提案手法では,事前学習プロセスにコントラスト信号と深部構造情報を導入している。
本手法は,複数の実世界のグラフデータセットに対して実験的に検証されている。
論文 参考訳(メタデータ) (2024-08-08T09:49:26Z) - Modularity aided consistent attributed graph clustering via coarsening [6.522020196906943]
グラフクラスタリングは、属性付きグラフを分割し、コミュニティを検出するための重要な教師なし学習手法である。
本稿では,ブロックの最大化最小化手法を用いて,対数行列,滑らか性,モジュラリティを組み込んだ損失関数を提案する。
我々のアルゴリズムはグラフニューラルネットワーク(GNN)と変分グラフオートエンコーダ(VGAE)をシームレスに統合し、拡張ノードの特徴を学習し、例外的なクラスタリング性能を実現する。
論文 参考訳(メタデータ) (2024-07-09T10:42:19Z) - Deep Contrastive Graph Learning with Clustering-Oriented Guidance [61.103996105756394]
グラフ畳み込みネットワーク(GCN)は、グラフベースのクラスタリングを改善する上で大きな可能性を秘めている。
モデルはGCNを適用するために初期グラフを事前に推定する。
一般的なデータクラスタリングには,Deep Contrastive Graph Learning (DCGL)モデルが提案されている。
論文 参考訳(メタデータ) (2024-02-25T07:03:37Z) - CARL-G: Clustering-Accelerated Representation Learning on Graphs [18.763104937800215]
本稿では,クラスタ検証指標(CVI)にインスパイアされた損失を利用したグラフ表現学習のための新しいクラスタリングベースのフレームワークを提案する。
CARL-Gはクラスタリング法やCVIに適応し,クラスタリング法とCVIの適切な選択により,CARL-Gは4/5データセットのノード分類ベースラインを最大79倍のトレーニングスピードアップで上回ることを示す。
論文 参考訳(メタデータ) (2023-06-12T08:14:42Z) - Localized Contrastive Learning on Graphs [110.54606263711385]
局所グラフコントラスト学習(Local-GCL)という,シンプルだが効果的なコントラストモデルを導入する。
その単純さにもかかわらず、Local-GCLは、様々なスケールと特性を持つグラフ上の自己教師付きノード表現学習タスクにおいて、非常に競争力のある性能を達成する。
論文 参考訳(メタデータ) (2022-12-08T23:36:00Z) - GraphCoCo: Graph Complementary Contrastive Learning [65.89743197355722]
グラフコントラスト学習(GCL)は、手作業によるアノテーションの監督なしに、グラフ表現学習(GRL)において有望な性能を示した。
本稿では,この課題に対処するため,グラフココというグラフ補完型コントラスト学習手法を提案する。
論文 参考訳(メタデータ) (2022-03-24T02:58:36Z) - Graph Representation Learning via Contrasting Cluster Assignments [57.87743170674533]
GRCCAと呼ばれるクラスタ割り当てを対比して、教師なしグラフ表現モデルを提案する。
クラスタリングアルゴリズムとコントラスト学習を組み合わせることで、局所的およびグローバルな情報を合成的にうまく活用する動機付けがある。
GRCCAは、ほとんどのタスクにおいて強力な競争力を持っている。
論文 参考訳(メタデータ) (2021-12-15T07:28:58Z) - Effective and Efficient Graph Learning for Multi-view Clustering [173.8313827799077]
マルチビュークラスタリングのための効率的かつ効率的なグラフ学習モデルを提案する。
本手法はテンソルシャッテンp-ノルムの最小化により異なるビューのグラフ間のビュー類似性を利用する。
提案アルゴリズムは時間経済であり,安定した結果を得るとともに,データサイズによく対応している。
論文 参考訳(メタデータ) (2021-08-15T13:14:28Z) - Learning to Cluster Faces via Confidence and Connectivity Estimation [136.5291151775236]
重複する部分グラフを多数必要とせず,完全に学習可能なクラスタリングフレームワークを提案する。
提案手法はクラスタリングの精度を大幅に向上させ,その上で訓練した認識モデルの性能を向上させるが,既存の教師付き手法に比べて桁違いに効率的である。
論文 参考訳(メタデータ) (2020-04-01T13:39:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。