論文の概要: Modularity aided consistent attributed graph clustering via coarsening
- arxiv url: http://arxiv.org/abs/2407.07128v2
- Date: Sun, 17 Nov 2024 21:05:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:30:22.527020
- Title: Modularity aided consistent attributed graph clustering via coarsening
- Title(参考訳): 粗大化による一貫した属性グラフクラスタリングを支援するモジュラリティ
- Authors: Samarth Bhatia, Yukti Makhija, Manoj Kumar, Sandeep Kumar,
- Abstract要約: グラフクラスタリングは、属性付きグラフを分割し、コミュニティを検出するための重要な教師なし学習手法である。
本稿では,ブロックの最大化最小化手法を用いて,対数行列,滑らか性,モジュラリティを組み込んだ損失関数を提案する。
我々のアルゴリズムはグラフニューラルネットワーク(GNN)と変分グラフオートエンコーダ(VGAE)をシームレスに統合し、拡張ノードの特徴を学習し、例外的なクラスタリング性能を実現する。
- 参考スコア(独自算出の注目度): 6.522020196906943
- License:
- Abstract: Graph clustering is an important unsupervised learning technique for partitioning graphs with attributes and detecting communities. However, current methods struggle to accurately capture true community structures and intra-cluster relations, be computationally efficient, and identify smaller communities. We address these challenges by integrating coarsening and modularity maximization, effectively leveraging both adjacency and node features to enhance clustering accuracy. We propose a loss function incorporating log-determinant, smoothness, and modularity components using a block majorization-minimization technique, resulting in superior clustering outcomes. The method is theoretically consistent under the Degree-Corrected Stochastic Block Model (DC-SBM), ensuring asymptotic error-free performance and complete label recovery. Our provably convergent and time-efficient algorithm seamlessly integrates with graph neural networks (GNNs) and variational graph autoencoders (VGAEs) to learn enhanced node features and deliver exceptional clustering performance. Extensive experiments on benchmark datasets demonstrate its superiority over existing state-of-the-art methods for both attributed and non-attributed graphs.
- Abstract(参考訳): グラフクラスタリングは、属性付きグラフを分割し、コミュニティを検出するための重要な教師なし学習手法である。
しかし、現在の手法では、真のコミュニティ構造とクラスタ内関係を正確に把握し、計算効率を上げ、より小さなコミュニティを特定するのに苦労している。
粗大化とモジュラリティの最大化を統合することで、これらの課題に対処し、クラスタリングの精度を高めるために、隣接性とノード機能の両方を効果的に活用する。
本稿では,ブロックの最大化最小化手法を用いて,ログ行列,滑らか度,モジュラリティ成分を組み込んだ損失関数を提案する。
この手法は、DC-SBM(Degree-Corrected Stochastic Block Model)の下で理論的に一貫性があり、漸近的なエラーのない性能と完全なラベル回復を保証する。
提案アルゴリズムはグラフニューラルネットワーク(GNN)と変分グラフオートエンコーダ(VGAE)とシームレスに統合し,拡張ノードの特徴を学習し,異常なクラスタリング性能を実現する。
ベンチマークデータセットの大規模な実験は、属性グラフと非属性グラフの両方に対して、既存の最先端手法よりも優れていることを示す。
関連論文リスト
- A Dual Adaptive Assignment Approach for Robust Graph-Based Clustering [18.614842530666834]
我々は、ロバストグラフベースクラスタリング(RDSA)のためのDual Adaptive Assignment Approachと呼ばれる新しいフレームワークを導入する。
RDSAは3つの主要なコンポーネントから構成される: (i) グラフのトポロジ的特徴とノード属性を効果的に統合するノード埋め込みモジュール、 (ii) ノード割り当てに親和性行列を利用することでグラフモジュラリティを改善する構造ベースのソフトアサインモジュール、 (iii) コミュニティランドマークを識別し、モデルの堅牢性を高めるためにノード割り当てを洗練させるノードベースのソフトアサインモジュール。
この結果から,RDSAはクラスタリングの有効性やロバスト性,適応性など,グラフの種類によって堅牢なクラスタリングを実現していることが明らかとなった。
論文 参考訳(メタデータ) (2024-10-29T05:18:34Z) - Revisiting Modularity Maximization for Graph Clustering: A Contrastive Learning Perspective [44.4638436277021]
コントラスト型プリテキストタスクとして考案されたモジュラリティを活用する,コミュニティ対応のグラフクラスタリングフレームワークMAGIを提案する。
モジュラリティとグラフの対照的な学習との間には,正の例と負の例がモジュール性によって自然に定義される,強い関連性を示す。
本研究は,コミュニティ対応のグラフクラスタリングフレームワークであるMAGIを提案する。
論文 参考訳(メタデータ) (2024-06-20T13:14:44Z) - Redundancy-Free Self-Supervised Relational Learning for Graph Clustering [13.176413653235311]
冗長フリーグラフクラスタリング(R$2$FGC)という,自己教師付き深層グラフクラスタリング手法を提案する。
オートエンコーダとグラフオートエンコーダに基づいて,グローバルビューとローカルビューの両方から属性レベルと構造レベルの関係情報を抽出する。
この実験は,R$2$FGCが最先端のベースラインよりも優れていることを示すために,広く使用されているベンチマークデータセット上で実施されている。
論文 参考訳(メタデータ) (2023-09-09T06:18:50Z) - Localized Contrastive Learning on Graphs [110.54606263711385]
局所グラフコントラスト学習(Local-GCL)という,シンプルだが効果的なコントラストモデルを導入する。
その単純さにもかかわらず、Local-GCLは、様々なスケールと特性を持つグラフ上の自己教師付きノード表現学習タスクにおいて、非常に競争力のある性能を達成する。
論文 参考訳(メタデータ) (2022-12-08T23:36:00Z) - Data-heterogeneity-aware Mixing for Decentralized Learning [63.83913592085953]
グラフの混合重みとノード間のデータ不均一性の関係に収束の依存性を特徴付ける。
グラフが現在の勾配を混合する能力を定量化する計量法を提案する。
そこで本研究では,パラメータを周期的かつ効率的に最適化する手法を提案する。
論文 参考訳(メタデータ) (2022-04-13T15:54:35Z) - Deep Attention-guided Graph Clustering with Dual Self-supervision [49.040136530379094]
デュアル・セルフ・スーパービジョン(DAGC)を用いたディープアテンション誘導グラフクラスタリング法を提案する。
我々は,三重項Kulback-Leibler分散損失を持つソフトな自己スーパービジョン戦略と,擬似的な監督損失を持つハードな自己スーパービジョン戦略からなる二重自己スーパービジョンソリューションを開発する。
提案手法は6つのベンチマークデータセットにおける最先端の手法より一貫して優れている。
論文 参考訳(メタデータ) (2021-11-10T06:53:03Z) - Effective and Efficient Graph Learning for Multi-view Clustering [173.8313827799077]
マルチビュークラスタリングのための効率的かつ効率的なグラフ学習モデルを提案する。
本手法はテンソルシャッテンp-ノルムの最小化により異なるビューのグラフ間のビュー類似性を利用する。
提案アルゴリズムは時間経済であり,安定した結果を得るとともに,データサイズによく対応している。
論文 参考訳(メタデータ) (2021-08-15T13:14:28Z) - Attention-driven Graph Clustering Network [49.040136530379094]
我々は、注意駆動グラフクラスタリングネットワーク(AGCN)という新しいディープクラスタリング手法を提案する。
AGCNは、ノード属性特徴とトポロジグラフ特徴を動的に融合するために、不均一な融合モジュールを利用する。
AGCNは、教師なしの方法で特徴学習とクラスタ割り当てを共同で行うことができる。
論文 参考訳(メタデータ) (2021-08-12T02:30:38Z) - Amortized Probabilistic Detection of Communities in Graphs [39.56798207634738]
そこで我々は,アモータイズされたコミュニティ検出のためのシンプルなフレームワークを提案する。
我々はGNNの表現力と最近のアモータイズクラスタリングの手法を組み合わせる。
我々は、合成および実データセットに関するフレームワークから、いくつかのモデルを評価する。
論文 参考訳(メタデータ) (2020-10-29T16:18:48Z) - Structured Graph Learning for Clustering and Semi-supervised
Classification [74.35376212789132]
データの局所構造とグローバル構造の両方を保存するためのグラフ学習フレームワークを提案する。
本手法は, サンプルの自己表現性を利用して, 局所構造を尊重するために, 大域的構造と適応的隣接アプローチを捉える。
我々のモデルは、ある条件下でのカーネルk平均法とk平均法の組合せと等価である。
論文 参考訳(メタデータ) (2020-08-31T08:41:20Z) - Graph Clustering with Graph Neural Networks [5.305362965553278]
グラフニューラルネットワーク(GNN)は多くのグラフ解析タスクにおいて最先端の結果を得た。
グラフクラスタリングのようなグラフ上の教師なしの問題は、GNNの進歩に対してより抵抗性があることが証明されている。
本稿では,クラスタリング品質のモジュラリティ尺度にインスパイアされた教師なしプール手法であるDeep Modularity Networks (DMoN)を紹介する。
論文 参考訳(メタデータ) (2020-06-30T15:30:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。