Morphology-Enhanced CAM-Guided SAM for weakly supervised Breast Lesion Segmentation
- URL: http://arxiv.org/abs/2311.11176v2
- Date: Wed, 22 May 2024 14:13:10 GMT
- Title: Morphology-Enhanced CAM-Guided SAM for weakly supervised Breast Lesion Segmentation
- Authors: Xin Yue, Xiaoling Liu, Qing Zhao, Jianqiang Li, Changwei Song, Suqin Liu, Zhikai Yang, Guanghui Fu,
- Abstract summary: We present a novel framework for weakly supervised lesion segmentation in early breast ultrasound images.
Our method uses morphological enhancement and class activation map (CAM)-guided localization.
This approach does not require pixel-level annotation, thereby reducing the cost of data annotation.
- Score: 7.747608350830482
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ultrasound imaging plays a critical role in the early detection of breast cancer. Accurate identification and segmentation of lesions are essential steps in clinical practice, requiring methods to assist physicians in lesion segmentation. However, ultrasound lesion segmentation models based on supervised learning require extensive manual labeling, which is both time-consuming and labor-intensive. In this study, we present a novel framework for weakly supervised lesion segmentation in early breast ultrasound images. Our method uses morphological enhancement and class activation map (CAM)-guided localization. Finally, we employ the Segment Anything Model (SAM), a computer vision foundation model, for detailed segmentation. This approach does not require pixel-level annotation, thereby reducing the cost of data annotation. The performance of our method is comparable to supervised learning methods that require manual annotations, achieving a Dice score of 74.39% and outperforming comparative supervised models in terms of Hausdorff distance in the BUSI dataset. These results demonstrate that our framework effectively integrates weakly supervised learning with SAM, providing a promising solution for breast cancer image analysis. The code for this study is available at: https://github.com/YueXin18/MorSeg-CAM-SAM.
Related papers
- EP-SAM: Weakly Supervised Histopathology Segmentation via Enhanced Prompt with Segment Anything [3.760646312664378]
Pathological diagnosis of diseases like cancer has conventionally relied on the evaluation of morphological features by physicians and pathologists.
Recent advancements in compute-aided diagnosis (CAD) systems are gaining significant attention as diagnostic support tools.
We present a weakly supervised semantic segmentation (WSSS) model by combining class activation map and Segment Anything Model (SAM)-based pseudo-labeling.
arXiv Detail & Related papers (2024-10-17T14:55:09Z) - SAM-Driven Weakly Supervised Nodule Segmentation with Uncertainty-Aware Cross Teaching [13.5553526185399]
Automated nodule segmentation is essential for computer-assisted diagnosis in ultrasound images.
Recently, segmentation foundation models like SAM have shown impressive generalizability on natural images.
In this work, we devise a novel weakly supervised framework that effectively utilizes the segmentation foundation model to generate pseudo-labels.
arXiv Detail & Related papers (2024-07-18T14:27:54Z) - Improving Segment Anything on the Fly: Auxiliary Online Learning and Adaptive Fusion for Medical Image Segmentation [52.172885882728174]
In medical imaging contexts, it is not uncommon for human experts to rectify segmentations of specific test samples after SAM generates its segmentation predictions.
We introduce a novel approach that leverages the advantages of online machine learning to enhance Segment Anything (SA) during test time.
We employ rectified annotations to perform online learning, with the aim of improving the segmentation quality of SA on medical images.
arXiv Detail & Related papers (2024-06-03T03:16:25Z) - Enhancing AI Diagnostics: Autonomous Lesion Masking via Semi-Supervised Deep Learning [1.4053129774629076]
This study presents an unsupervised domain adaptation method aimed at autonomously generating image masks outlining regions of interest (ROIs) for differentiating breast lesions in breast ultrasound (US) imaging.
Our semi-supervised learning approach utilizes a primitive model trained on a small public breast US dataset with true annotations.
This model is then iteratively refined for the domain adaptation task, generating pseudo-masks for our private, unannotated breast US dataset.
arXiv Detail & Related papers (2024-04-18T18:25:00Z) - MedCLIP-SAM: Bridging Text and Image Towards Universal Medical Image Segmentation [2.2585213273821716]
We propose a novel framework, called MedCLIP-SAM, that combines CLIP and SAM models to generate segmentation of clinical scans.
By extensively testing three diverse segmentation tasks and medical image modalities, our proposed framework has demonstrated excellent accuracy.
arXiv Detail & Related papers (2024-03-29T15:59:11Z) - Semi- and Weakly-Supervised Learning for Mammogram Mass Segmentation with Limited Annotations [49.33388736227072]
We propose a semi- and weakly-supervised learning framework for mass segmentation.
We use limited strongly-labeled samples and sufficient weakly-labeled samples to achieve satisfactory performance.
Experiments on CBIS-DDSM and INbreast datasets demonstrate the effectiveness of our method.
arXiv Detail & Related papers (2024-03-14T12:05:25Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
We propose ARCO, a semi-supervised contrastive learning framework with stratified group theory for medical image segmentation.
We first propose building ARCO through the concept of variance-reduced estimation and show that certain variance-reduction techniques are particularly beneficial in pixel/voxel-level segmentation tasks.
We experimentally validate our approaches on eight benchmarks, i.e., five 2D/3D medical and three semantic segmentation datasets, with different label settings.
arXiv Detail & Related papers (2023-02-03T13:50:25Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
We propose a new semi-supervised adversarial method called Patch Confidence Adrial Training (PCA) for medical image segmentation.
PCA learns the pixel structure and context information in each patch to get enough gradient feedback, which aids the discriminator in convergent to an optimal state.
Our method outperforms the state-of-the-art semi-supervised methods, which demonstrates its effectiveness for medical image segmentation.
arXiv Detail & Related papers (2022-07-24T07:45:47Z) - Mixed-UNet: Refined Class Activation Mapping for Weakly-Supervised
Semantic Segmentation with Multi-scale Inference [28.409679398886304]
We develop a novel model named Mixed-UNet, which has two parallel branches in the decoding phase.
We evaluate the designed Mixed-UNet against several prevalent deep learning-based segmentation approaches on our dataset collected from the local hospital and public datasets.
arXiv Detail & Related papers (2022-05-06T08:37:02Z) - Label Cleaning Multiple Instance Learning: Refining Coarse Annotations
on Single Whole-Slide Images [83.7047542725469]
Annotating cancerous regions in whole-slide images (WSIs) of pathology samples plays a critical role in clinical diagnosis, biomedical research, and machine learning algorithms development.
We present a method, named Label Cleaning Multiple Instance Learning (LC-MIL), to refine coarse annotations on a single WSI without the need of external training data.
Our experiments on a heterogeneous WSI set with breast cancer lymph node metastasis, liver cancer, and colorectal cancer samples show that LC-MIL significantly refines the coarse annotations, outperforming the state-of-the-art alternatives, even while learning from a single slide.
arXiv Detail & Related papers (2021-09-22T15:06:06Z) - Global Guidance Network for Breast Lesion Segmentation in Ultrasound
Images [84.03487786163781]
We develop a deep convolutional neural network equipped with a global guidance block (GGB) and breast lesion boundary detection modules.
Our network outperforms other medical image segmentation methods and the recent semantic segmentation methods on breast ultrasound lesion segmentation.
arXiv Detail & Related papers (2021-04-05T13:15:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.