Shape-Sensitive Loss for Catheter and Guidewire Segmentation
- URL: http://arxiv.org/abs/2311.11205v2
- Date: Sat, 20 Jan 2024 04:34:57 GMT
- Title: Shape-Sensitive Loss for Catheter and Guidewire Segmentation
- Authors: Chayun Kongtongvattana, Baoru Huang, Jingxuan Kang, Hoan Nguyen,
Olajide Olufemi, Anh Nguyen
- Abstract summary: We introduce a shape-sensitive loss function for catheter and guidewire segmentation.
We utilize it in a vision transformer network to establish a new state-of-the-art result on a large-scale X-ray images dataset.
- Score: 5.115480059688438
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We introduce a shape-sensitive loss function for catheter and guidewire
segmentation and utilize it in a vision transformer network to establish a new
state-of-the-art result on a large-scale X-ray images dataset. We transform
network-derived predictions and their corresponding ground truths into signed
distance maps, thereby enabling any networks to concentrate on the essential
boundaries rather than merely the overall contours. These SDMs are subjected to
the vision transformer, efficiently producing high-dimensional feature vectors
encapsulating critical image attributes. By computing the cosine similarity
between these feature vectors, we gain a nuanced understanding of image
similarity that goes beyond the limitations of traditional overlap-based
measures. The advantages of our approach are manifold, ranging from scale and
translation invariance to superior detection of subtle differences, thus
ensuring precise localization and delineation of the medical instruments within
the images. Comprehensive quantitative and qualitative analyses substantiate
the significant enhancement in performance over existing baselines,
demonstrating the promise held by our new shape-sensitive loss function for
improving catheter and guidewire segmentation.
Related papers
- Contour-weighted loss for class-imbalanced image segmentation [2.183832403223894]
Image segmentation is critically important in almost all medical image analysis for automatic interpretations and processing.
It is often challenging to perform image segmentation due to data imbalance between intra- and inter-class.
We propose a new methodology to address the issue, with a compact yet effective contour-weighted loss function.
arXiv Detail & Related papers (2024-06-07T07:43:52Z) - Slicer Networks [8.43960865813102]
We propose the Slicer Network, a novel architecture for medical image analysis.
The Slicer Network strategically refines and upsamples feature maps via a splatting-blurring-slicing process.
Experiments across different medical imaging applications have verified the Slicer Network's improved accuracy and efficiency.
arXiv Detail & Related papers (2024-01-18T09:50:26Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - Self-supervised Semantic Segmentation: Consistency over Transformation [3.485615723221064]
We propose a novel self-supervised algorithm, textbfS$3$-Net, which integrates a robust framework based on the proposed Inception Large Kernel Attention (I-LKA) modules.
We leverage deformable convolution as an integral component to effectively capture and delineate lesion deformations for superior object boundary definition.
Our experimental results on skin lesion and lung organ segmentation tasks show the superior performance of our method compared to the SOTA approaches.
arXiv Detail & Related papers (2023-08-31T21:28:46Z) - Scale-aware Super-resolution Network with Dual Affinity Learning for
Lesion Segmentation from Medical Images [50.76668288066681]
We present a scale-aware super-resolution network to adaptively segment lesions of various sizes from low-resolution medical images.
Our proposed network achieved consistent improvements compared to other state-of-the-art methods.
arXiv Detail & Related papers (2023-05-30T14:25:55Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Segmentation-Renormalized Deep Feature Modulation for Unpaired Image
Harmonization [0.43012765978447565]
Cycle-consistent Generative Adversarial Networks have been used to harmonize image sets between a source and target domain.
These methods are prone to instability, contrast inversion, intractable manipulation of pathology, and steganographic mappings which limit their reliable adoption in real-world medical imaging.
We propose a segmentation-renormalized image translation framework to reduce inter-scanner harmonization while preserving anatomical layout.
arXiv Detail & Related papers (2021-02-11T23:53:51Z) - Context-Aware Refinement Network Incorporating Structural Connectivity
Prior for Brain Midline Delineation [50.868845400939314]
We propose a context-aware refinement network (CAR-Net) to refine and integrate the feature pyramid representation generated by the UNet.
For keeping the structural connectivity of the brain midline, we introduce a novel connectivity regular loss.
The proposed method requires fewer parameters and outperforms three state-of-the-art methods in terms of four evaluation metrics.
arXiv Detail & Related papers (2020-07-10T14:01:20Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z) - Unsupervised Bidirectional Cross-Modality Adaptation via Deeply
Synergistic Image and Feature Alignment for Medical Image Segmentation [73.84166499988443]
We present a novel unsupervised domain adaptation framework, named as Synergistic Image and Feature Alignment (SIFA)
Our proposed SIFA conducts synergistic alignment of domains from both image and feature perspectives.
Experimental results on two different tasks demonstrate that our SIFA method is effective in improving segmentation performance on unlabeled target images.
arXiv Detail & Related papers (2020-02-06T13:49:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.