What Lies beyond the Pareto Front? A Survey on Decision-Support Methods
for Multi-Objective Optimization
- URL: http://arxiv.org/abs/2311.11288v1
- Date: Sun, 19 Nov 2023 10:24:39 GMT
- Title: What Lies beyond the Pareto Front? A Survey on Decision-Support Methods
for Multi-Objective Optimization
- Authors: Zuzanna Osika, Jazmin Zatarain Salazar, Diederik M. Roijers, Frans A.
Oliehoek and Pradeep K. Murukannaiah
- Abstract summary: We present a review that unifies decision-support methods for exploring the solutions produced by multi-objective optimization (MOO) algorithms.
As MOO is applied to solve diverse problems, approaches for analyzing the trade-offs offered by MOO algorithms are scattered across fields.
- Score: 11.935678130032766
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a review that unifies decision-support methods for exploring the
solutions produced by multi-objective optimization (MOO) algorithms. As MOO is
applied to solve diverse problems, approaches for analyzing the trade-offs
offered by MOO algorithms are scattered across fields. We provide an overview
of the advances on this topic, including methods for visualization, mining the
solution set, and uncertainty exploration as well as emerging research
directions, including interactivity, explainability, and ethics. We synthesize
these methods drawing from different fields of research to build a unified
approach, independent of the application. Our goals are to reduce the entry
barrier for researchers and practitioners on using MOO algorithms and to
provide novel research directions.
Related papers
- EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
Large language models (LLMs) remain under-studied in scenarios requiring optimal decision-making under uncertainty.
We measure LLMs' (in)ability to make optimal decisions in bandits, a state-less reinforcement learning setting relevant to many applications.
Motivated by the existence of optimal exploration algorithms, we propose efficient ways to integrate this algorithmic knowledge into LLMs.
arXiv Detail & Related papers (2024-10-08T17:54:03Z) - Unraveling the Versatility and Impact of Multi-Objective Optimization: Algorithms, Applications, and Trends for Solving Complex Real-World Problems [4.023511716339818]
Multi-Objective Optimization (MOO) techniques have become increasingly popular in recent years.
This paper examines recently developed MOO-based algorithms.
In real-world case studies, MOO algorithms address complicated decision-making challenges.
arXiv Detail & Related papers (2024-06-29T15:19:46Z) - Constrained Reinforcement Learning with Average Reward Objective: Model-Based and Model-Free Algorithms [34.593772931446125]
monograph focuses on the exploration of various model-based and model-free approaches for Constrained within the context of average reward Markov Decision Processes (MDPs)
The primal-dual policy gradient-based algorithm is explored as a solution for constrained MDPs.
arXiv Detail & Related papers (2024-06-17T12:46:02Z) - Data-Efficient Interactive Multi-Objective Optimization Using ParEGO [6.042269506496206]
Multi-objective optimization seeks to identify a set of non-dominated solutions that provide optimal trade-offs among competing objectives.
In practical applications, decision-makers (DMs) will select a single solution that aligns with their preferences to be implemented.
We propose two novel algorithms that efficiently locate the most preferred region of the Pareto front in expensive-to-evaluate problems.
arXiv Detail & Related papers (2024-01-12T15:55:51Z) - A Survey on Interpretable Cross-modal Reasoning [64.37362731950843]
Cross-modal reasoning (CMR) has emerged as a pivotal area with applications spanning from multimedia analysis to healthcare diagnostics.
This survey delves into the realm of interpretable cross-modal reasoning (I-CMR)
This survey presents a comprehensive overview of the typical methods with a three-level taxonomy for I-CMR.
arXiv Detail & Related papers (2023-09-05T05:06:48Z) - Pareto Set Learning for Neural Multi-objective Combinatorial
Optimization [6.091096843566857]
Multiobjective optimization (MOCO) problems can be found in many real-world applications.
We develop a learning-based approach to approximate the whole Pareto set for a given MOCO problem without further search procedure.
Our proposed method significantly outperforms some other methods on the multiobjective traveling salesman problem, multiconditioned vehicle routing problem and multi knapsack problem in terms of solution quality, speed, and model efficiency.
arXiv Detail & Related papers (2022-03-29T09:26:22Z) - Learning Proximal Operators to Discover Multiple Optima [66.98045013486794]
We present an end-to-end method to learn the proximal operator across non-family problems.
We show that for weakly-ized objectives and under mild conditions, the method converges globally.
arXiv Detail & Related papers (2022-01-28T05:53:28Z) - An Overview and Experimental Study of Learning-based Optimization
Algorithms for Vehicle Routing Problem [49.04543375851723]
Vehicle routing problem (VRP) is a typical discrete optimization problem.
Many studies consider learning-based optimization algorithms to solve VRP.
This paper reviews recent advances in this field and divides relevant approaches into end-to-end approaches and step-by-step approaches.
arXiv Detail & Related papers (2021-07-15T02:13:03Z) - A review of approaches to modeling applied vehicle routing problems [77.34726150561087]
We review the approaches for modeling vehicle routing problems.
We formulate several criteria for evaluating modeling methods.
We discuss several future research avenues in the field of modeling VRP domains.
arXiv Detail & Related papers (2021-05-23T14:50:14Z) - PAMELI: A Meta-Algorithm for Computationally Expensive Multi-Objective
Optimization Problems [0.0]
The proposed algorithm is based on solving a set of surrogate problems defined by models of the real one.
Our algorithm also performs a meta-search for optimal surrogate models and navigation strategies for the optimization landscape.
arXiv Detail & Related papers (2021-03-19T11:18:03Z) - Follow the bisector: a simple method for multi-objective optimization [65.83318707752385]
We consider optimization problems, where multiple differentiable losses have to be minimized.
The presented method computes descent direction in every iteration to guarantee equal relative decrease of objective functions.
arXiv Detail & Related papers (2020-07-14T09:50:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.