Spin squeezing generated by the anisotropic central spin model
- URL: http://arxiv.org/abs/2311.11308v2
- Date: Tue, 28 Nov 2023 02:53:15 GMT
- Title: Spin squeezing generated by the anisotropic central spin model
- Authors: Lei Shao and Libin Fu
- Abstract summary: We investigate the spin squeezing and the quantum phase transition in an anisotropic central spin system.
We find that this kind of central spin systems can be mapped to the anisotropic Lipkin-Meshkov-Glick model in the limit where the ratio of transition between the central spin and the spin bath tends towards infinity.
This work offers a promising scheme for generating spin-squeezed state and paves the way for potential advancements in quantum sensing.
- Score: 0.28101605533398166
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spin squeezing, as a crucial quantum resource, plays a pivotal role in
quantum metrology, enabling us to achieve high-precision parameter estimation
schemes. Here we investigate the spin squeezing and the quantum phase
transition in an anisotropic central spin system. We find that this kind of
central spin systems can be mapped to the anisotropic Lipkin-Meshkov-Glick
model in the limit where the ratio of transition frequencies between the
central spin and the spin bath tends towards infinity. This property can induce
a one-axis twisting interaction and provides a new possibility for generating
spin squeezing. We separately consider generating spin-squeezed states via the
ground state and the dynamic evolution of the central spin model. The results
show that the spin squeezing parameter improves as the anisotropy parameter
decreases, and its value scales with system size as $N^{-2/3}$. Furthermore, we
obtain the critical exponent of the quantum Fisher information around the
critical point by numerical simulation, and find its value tends to $4/3$ as
the frequency ratio and the system size approach infinity. This work offers a
promising scheme for generating spin-squeezed state and paves the way for
potential advancements in quantum sensing.
Related papers
- Super-Heisenberg scaling of the quantum Fisher information using spin-motion states [0.0]
We propose a spin-motion state for high-precision quantum metrology using a trapped ion system.
We show that the adiabatic evolution creates a spin-squeezed state, which reduces the quantum projective noise to a sub-shot noise limit.
arXiv Detail & Related papers (2024-11-15T11:33:03Z) - Scalable spin squeezing in two-dimensional arrays of dipolar large-$S$
spins [0.0]
We show that spin-spin interactions lead to scalable spin squeezing along the non-equilibrium unitary evolution in a coherent spin state.
For sufficiently small quadratic shifts, the spin squeezing dynamics is akin to that produced by the paradigmatic one-axis-twisting (OAT) model.
Spin squeezing with OAT-like scaling is shown to be protected by the robustness of long-range ferromagnetic order to quadratic shifts.
arXiv Detail & Related papers (2023-09-11T10:32:24Z) - Entanglement and replica symmetry breaking in a driven-dissipative
quantum spin glass [17.92148801290204]
We describe a quantum cavity QED system that realizes an intrinsically driven-dissipative spin glass.
We observe that entanglement plays an important role in the emergence of replica symmetry breaking.
This practicable system could serve as a testbed for exploring how quantum effects enrich the physics of spin glasses.
arXiv Detail & Related papers (2023-07-19T17:59:14Z) - Control of an environmental spin defect beyond the coherence limit of a central spin [79.16635054977068]
We present a scalable approach to increase the size of electronic-spin registers.
We experimentally realize this approach to demonstrate the detection and coherent control of an unknown electronic spin outside the coherence limit of a central NV.
Our work paves the way for engineering larger quantum spin registers with the potential to advance nanoscale sensing, enable correlated noise spectroscopy for error correction, and facilitate the realization of spin-chain quantum wires for quantum communication.
arXiv Detail & Related papers (2023-06-29T17:55:16Z) - Scalable Spin Squeezing from Finite Temperature Easy-plane Magnetism [26.584014467399378]
We conjecture that any Hamiltonian exhibiting finite temperature, easy-plane ferromagnetism can be used to generate scalable spin squeezing.
Our results provide insights into the landscape of Hamiltonians that can be used to generate metrologically useful quantum states.
arXiv Detail & Related papers (2023-01-23T18:59:59Z) - Slow semiclassical dynamics of a two-dimensional Hubbard model in
disorder-free potentials [77.34726150561087]
We show that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
In particular, we focus on a finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic potential and spin dependence of the tilt, results in subdiffusive dynamics.
arXiv Detail & Related papers (2022-10-03T16:51:25Z) - Quantum simulation of spin-1/2 XYZ model using solid-state spin centers [2.0317687721731175]
We propose a novel solid-state platform for creating quantum simulators based on implanted spin centers in semiconductors.
We show that under the presence of an external magnetic field, an array of $S=1$ spin centers interacting through magnetic dipole-dipole interaction can be mapped into an effective spin-half system.
This system presents a wide range of quantum phases and critical behaviors that can be controlled via magnetic field and orientational arrangement of the spin centers.
arXiv Detail & Related papers (2022-09-15T17:57:43Z) - Quantum phase transition in XXZ central spin model [7.229913921849519]
In general, the quantum phase transition (QPT) is supposed to occur only in the thermodynamical limit.
We present that the central spin model exhibits a normal-to-superradiant phase transition in the limit.
This work builds a novel connection between the qubit-spin systems and the qubit-field systems, which provides a possibility for the realization of criticality-enhanced quantum sensing in central spin systems.
arXiv Detail & Related papers (2022-07-09T04:25:35Z) - Gate-based spin readout of hole quantum dots with site-dependent
$g-$factors [101.23523361398418]
We experimentally investigate a hole double quantum dot in silicon by carrying out spin readout with gate-based reflectometry.
We show that characteristic features in the reflected phase signal arising from magneto-spectroscopy convey information on site-dependent $g-$factors in the two dots.
arXiv Detail & Related papers (2022-06-27T09:07:20Z) - Spin-spin coupling-based quantum and classical phase transitions in
two-impurity spin-boson models [55.41644538483948]
Two-interacting-impurity spin-boson models with vanishing transverse fields on the spin-pair are studied.
The dynamics of the magnetization is analysed for different levels of (an)isotropy.
arXiv Detail & Related papers (2022-05-19T08:01:03Z) - Dynamic quantum-enhanced sensing without entanglement in central spin
systems [1.9888283697653608]
We propose a quantum many-spin system composed of a central spin interacting with many surrounding spins.
We find that the Heisenberg scaling can be reached while the probe state only needs to be a product state.
Our result indicates that the dynamic quantum-enhanced sensing scheme seems feasible in realistic quantum central spin systems.
arXiv Detail & Related papers (2022-04-30T15:24:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.