Negotiated Representations for Machine Mearning Application
- URL: http://arxiv.org/abs/2311.11410v1
- Date: Sun, 19 Nov 2023 19:53:49 GMT
- Title: Negotiated Representations for Machine Mearning Application
- Authors: Nuri Korhan, Samet Bayram
- Abstract summary: Overfitting is a phenomenon that occurs when a machine learning model is trained for too long and focused too much on the exact fitness of the training samples to the provided training labels.
We present an approach that increases the classification accuracy of machine learning models by allowing the model to negotiate output representations of the samples with previously determined class labels.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Overfitting is a phenomenon that occurs when a machine learning model is
trained for too long and focused too much on the exact fitness of the training
samples to the provided training labels and cannot keep track of the predictive
rules that would be useful on the test data. This phenomenon is commonly
attributed to memorization of particular samples, memorization of the noise,
and forced fitness into a data set of limited samples by using a high number of
neurons. While it is true that the model encodes various peculiarities as the
training process continues, we argue that most of the overfitting occurs in the
process of reconciling sharply defined membership ratios. In this study, we
present an approach that increases the classification accuracy of machine
learning models by allowing the model to negotiate output representations of
the samples with previously determined class labels. By setting up a
negotiation between the models interpretation of the inputs and the provided
labels, we not only increased average classification accuracy but also
decreased the rate of overfitting without applying any other regularization
tricks. By implementing our negotiation paradigm approach to several low regime
machine learning problems by generating overfitting scenarios from publicly
available data sets such as CIFAR 10, CIFAR 100, and MNIST we have demonstrated
that the proposed paradigm has more capacity than its intended purpose. We are
sharing the experimental results and inviting the machine learning community to
explore the limits of the proposed paradigm. We also aim to incentive the
community to exploit the negotiation paradigm to overcome the learning related
challenges in other research fields such as continual learning. The Python code
of the experimental setup is uploaded to GitHub.
Related papers
- Diversified Batch Selection for Training Acceleration [68.67164304377732]
A prevalent research line, known as online batch selection, explores selecting informative subsets during the training process.
vanilla reference-model-free methods involve independently scoring and selecting data in a sample-wise manner.
We propose Diversified Batch Selection (DivBS), which is reference-model-free and can efficiently select diverse and representative samples.
arXiv Detail & Related papers (2024-06-07T12:12:20Z) - Pre-Trained Vision-Language Models as Partial Annotators [40.89255396643592]
Pre-trained vision-language models learn massive data to model unified representations of images and natural languages.
In this paper, we investigate a novel "pre-trained annotating - weakly-supervised learning" paradigm for pre-trained model application and experiment on image classification tasks.
arXiv Detail & Related papers (2024-05-23T17:17:27Z) - Asymmetric Co-teaching with Multi-view Consensus for Noisy Label
Learning [15.690502285538411]
We introduce our noisy-label learning approach, called Asymmetric Co-teaching (AsyCo)
AsyCo produces more consistent divergent results of the co-teaching models.
Experiments on synthetic and real-world noisy-label datasets show that AsyCo improves over current SOTA methods.
arXiv Detail & Related papers (2023-01-01T04:10:03Z) - Autoencoder Attractors for Uncertainty Estimation [13.618797548020462]
We propose a novel approach for uncertainty estimation based on autoencoder models.
We evaluate our approach on several dataset combinations as well as on an industrial application for occupant classification in the vehicle interior.
arXiv Detail & Related papers (2022-04-01T12:10:06Z) - BatchFormer: Learning to Explore Sample Relationships for Robust
Representation Learning [93.38239238988719]
We propose to enable deep neural networks with the ability to learn the sample relationships from each mini-batch.
BatchFormer is applied into the batch dimension of each mini-batch to implicitly explore sample relationships during training.
We perform extensive experiments on over ten datasets and the proposed method achieves significant improvements on different data scarcity applications.
arXiv Detail & Related papers (2022-03-03T05:31:33Z) - CMW-Net: Learning a Class-Aware Sample Weighting Mapping for Robust Deep
Learning [55.733193075728096]
Modern deep neural networks can easily overfit to biased training data containing corrupted labels or class imbalance.
Sample re-weighting methods are popularly used to alleviate this data bias issue.
We propose a meta-model capable of adaptively learning an explicit weighting scheme directly from data.
arXiv Detail & Related papers (2022-02-11T13:49:51Z) - Coded Machine Unlearning [34.08435990347253]
We present a coded learning protocol where the dataset is linearly coded before the learning phase.
We also present the corresponding unlearning protocol for the coded learning model along with a discussion on the proposed protocol's success in ensuring perfect unlearning.
arXiv Detail & Related papers (2020-12-31T17:20:34Z) - Message Passing Adaptive Resonance Theory for Online Active
Semi-supervised Learning [30.19936050747407]
We propose Message Passing Adaptive Resonance Theory (MPART) for online active semi-supervised learning.
MPART infers the class of unlabeled data and selects informative and representative samples through message passing between nodes on the topological graph.
We evaluate our model with comparable query selection strategies and frequencies, showing that MPART significantly outperforms the competitive models in online active learning environments.
arXiv Detail & Related papers (2020-12-02T14:14:42Z) - MixKD: Towards Efficient Distillation of Large-scale Language Models [129.73786264834894]
We propose MixKD, a data-agnostic distillation framework, to endow the resulting model with stronger generalization ability.
We prove from a theoretical perspective that under reasonable conditions MixKD gives rise to a smaller gap between the error and the empirical error.
Experiments under a limited-data setting and ablation studies further demonstrate the advantages of the proposed approach.
arXiv Detail & Related papers (2020-11-01T18:47:51Z) - Automatic Recall Machines: Internal Replay, Continual Learning and the
Brain [104.38824285741248]
Replay in neural networks involves training on sequential data with memorized samples, which counteracts forgetting of previous behavior caused by non-stationarity.
We present a method where these auxiliary samples are generated on the fly, given only the model that is being trained for the assessed objective.
Instead the implicit memory of learned samples within the assessed model itself is exploited.
arXiv Detail & Related papers (2020-06-22T15:07:06Z) - Learning Diverse Representations for Fast Adaptation to Distribution
Shift [78.83747601814669]
We present a method for learning multiple models, incorporating an objective that pressures each to learn a distinct way to solve the task.
We demonstrate our framework's ability to facilitate rapid adaptation to distribution shift.
arXiv Detail & Related papers (2020-06-12T12:23:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.