論文の概要: ADAPTER-RL: Adaptation of Any Agent using Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2311.11537v1
- Date: Mon, 20 Nov 2023 04:54:51 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-21 19:52:28.125011
- Title: ADAPTER-RL: Adaptation of Any Agent using Reinforcement Learning
- Title(参考訳): ADAPTER-RL:強化学習を用いた任意のエージェントの適応
- Authors: Yizhao Jin, Greg Slabaugh, Simon Lucas
- Abstract要約: アダプタは自然言語処理やコンピュータビジョンなどの教師あり学習コンテキストにおいて有効であることが証明されている。
本稿では,学習効率の向上とベースエージェントの改良を実証する,革新的な適応戦略を提案する。
提案するユニバーサルアプローチは、事前訓練されたニューラルネットワークだけでなく、ルールベースのエージェントとも互換性があり、人間の専門知識を統合する手段を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep Reinforcement Learning (DRL) agents frequently face challenges in
adapting to tasks outside their training distribution, including issues with
over-fitting, catastrophic forgetting and sample inefficiency. Although the
application of adapters has proven effective in supervised learning contexts
such as natural language processing and computer vision, their potential within
the DRL domain remains largely unexplored. This paper delves into the
integration of adapters in reinforcement learning, presenting an innovative
adaptation strategy that demonstrates enhanced training efficiency and
improvement of the base-agent, experimentally in the nanoRTS environment, a
real-time strategy (RTS) game simulation. Our proposed universal approach is
not only compatible with pre-trained neural networks but also with rule-based
agents, offering a means to integrate human expertise.
- Abstract(参考訳): 深層強化学習(DRL)エージェントは、過度な適合、破滅的な忘れ込み、サンプルの非効率といった問題を含む、トレーニングディストリビューション外のタスクに適応する際の課題にしばしば直面する。
アダプタの応用は自然言語処理やコンピュータビジョンといった教師あり学習の文脈において有効であることが証明されているが、DRL領域におけるその潜在能力は未解明のままである。
本稿では,強化学習におけるアダプタの統合について考察し,nanorts環境における学習効率の向上とベースエージェントの改善を実証する,リアルタイム戦略(rts)ゲームシミュレーションの革新的適応戦略を提案する。
提案するユニバーサルアプローチは、事前訓練されたニューラルネットワークだけでなく、ルールベースのエージェントとも互換性があり、人間の専門知識を統合する手段を提供する。
関連論文リスト
- From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
本稿では,エージェントの強化学習プロセスの最適化にステップワイド報酬を利用するStepAgentを紹介する。
エージェント反射とポリシー調整を容易にする暗黙の逆・逆の強化学習手法を提案する。
論文 参考訳(メタデータ) (2024-11-06T10:35:11Z) - A Method for Fast Autonomy Transfer in Reinforcement Learning [3.8049020806504967]
本稿では、迅速な自律移行を容易にするために、新しい強化学習(RL)戦略を提案する。
大規模なリトレーニングや微調整を必要とする従来の手法とは異なり、我々の手法は既存の知識を統合し、RLエージェントが新しい設定に迅速に適応できるようにする。
論文 参考訳(メタデータ) (2024-07-29T23:48:07Z) - Hybrid Reinforcement Learning for Optimizing Pump Sustainability in
Real-World Water Distribution Networks [55.591662978280894]
本稿では,実世界の配水ネットワーク(WDN)のリアルタイム制御を強化するために,ポンプスケジューリング最適化問題に対処する。
我々の主な目的は、エネルギー消費と運用コストを削減しつつ、物理的な運用上の制約を遵守することである。
進化に基づくアルゴリズムや遺伝的アルゴリズムのような伝統的な最適化手法は、収束保証の欠如によってしばしば不足する。
論文 参考訳(メタデータ) (2023-10-13T21:26:16Z) - Supplementing Gradient-Based Reinforcement Learning with Simple
Evolutionary Ideas [4.873362301533824]
我々は、強化学習(RL)における大規模だが指向的な学習ステップを導入するための、単純でサンプル効率のよいアルゴリズムを提案する。
この手法では、共通経験バッファを持つRLエージェントの集団を用いて、ポリシー空間を効率的に探索するために、エージェントのクロスオーバーと突然変異を行う。
論文 参考訳(メタデータ) (2023-05-10T09:46:53Z) - Human-Timescale Adaptation in an Open-Ended Task Space [56.55530165036327]
大規模にRLエージェントを訓練することで、オープンエンドの新規な3D問題に人間と同じくらい早く適応できる一般的なコンテキスト内学習アルゴリズムが実現可能であることを示す。
我々の研究は、より大規模で適応的なRLエージェントの基礎を築いた。
論文 参考訳(メタデータ) (2023-01-18T15:39:21Z) - Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels [112.63440666617494]
強化学習アルゴリズムは成功するが、エージェントと環境の間の大量の相互作用を必要とする。
本稿では,教師なしモデルベースRLを用いてエージェントを事前学習する手法を提案する。
我々はReal-Word RLベンチマークにおいて、適応中の環境摂動に対する抵抗性を示唆し、堅牢な性能を示す。
論文 参考訳(メタデータ) (2022-09-24T14:22:29Z) - Curriculum Based Reinforcement Learning of Grid Topology Controllers to
Prevent Thermal Cascading [0.19116784879310028]
本稿では,電力系統演算子のドメイン知識を強化学習フレームワークに統合する方法について述べる。
環境を改良することにより、報酬チューニングを伴うカリキュラムベースのアプローチをトレーニング手順に組み込む。
複数のシナリオに対する並列トレーニングアプローチは、エージェントをいくつかのシナリオに偏りなくし、グリッド操作の自然変動に対して堅牢にするために使用される。
論文 参考訳(メタデータ) (2021-12-18T20:32:05Z) - Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited
Data [125.7135706352493]
GAN(Generative Adversarial Network)は、高忠実度画像を合成するために、訓練に十分なデータを必要とする。
近年の研究では、差別者の過度な適合により、限られたデータでGANを訓練することは困難であることが示されている。
本稿では,APA (Adaptive Pseudo Augmentation) と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2021-11-12T18:13:45Z) - REIN-2: Giving Birth to Prepared Reinforcement Learning Agents Using
Reinforcement Learning Agents [0.0]
本稿では,課題学習の目的を課題(あるいは課題の集合)の目的にシフトさせるメタラーニング手法を提案する。
我々のモデルであるREIN-2は、RLフレームワーク内で構成されたメタ学習スキームであり、その目的は、他のRLエージェントの作り方を学ぶメタRLエージェントを開発することである。
従来の最先端のDeep RLアルゴリズムと比較して、実験結果は、人気のあるOpenAI Gym環境において、我々のモデルの顕著な性能を示している。
論文 参考訳(メタデータ) (2021-10-11T10:13:49Z) - Dynamics Generalization via Information Bottleneck in Deep Reinforcement
Learning [90.93035276307239]
本稿では,RLエージェントのより優れた一般化を実現するために,情報理論正則化目標とアニーリングに基づく最適化手法を提案する。
迷路ナビゲーションからロボットタスクまで、さまざまな領域において、我々のアプローチの極端な一般化の利点を実証する。
この研究は、タスク解決のために冗長な情報を徐々に取り除き、RLの一般化を改善するための原則化された方法を提供する。
論文 参考訳(メタデータ) (2020-08-03T02:24:20Z) - Regularized Evolutionary Population-Based Training [11.624954122221562]
本稿では、DNNの重みのトレーニングと損失関数のメタラーニングをインターリーブするEPBT(Population-Based Training)アルゴリズムを提案する。
EPBTは画像分類ベンチマークを高速かつ正確に学習する。
論文 参考訳(メタデータ) (2020-02-11T06:28:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。