論文の概要: Which AI Technique Is Better to Classify Requirements? An Experiment with SVM, LSTM, and ChatGPT
- arxiv url: http://arxiv.org/abs/2311.11547v2
- Date: Tue, 16 Apr 2024 09:06:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-17 23:45:27.956289
- Title: Which AI Technique Is Better to Classify Requirements? An Experiment with SVM, LSTM, and ChatGPT
- Title(参考訳): 要求を分類する上で、どのAI技術が優れているか? SVM、LSTM、ChatGPTによる実験
- Authors: Abdelkarim El-Hajjami, Nicolas Fafin, Camille Salinesi,
- Abstract要約: 本稿では,要求分類のための2つのChatGPTモデルの実証評価を報告する。
以上の結果から,全ての要件クラスに最適なテクニックは存在しないことが明らかとなった。
少数ショット設定は、主にゼロショット結果が著しく低いシナリオで有用であることが判明した。
- 参考スコア(独自算出の注目度): 0.4588028371034408
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, Large Language Models like ChatGPT have demonstrated remarkable proficiency in various Natural Language Processing tasks. Their application in Requirements Engineering, especially in requirements classification, has gained increasing interest. This paper reports an extensive empirical evaluation of two ChatGPT models, specifically gpt-3.5-turbo, and gpt-4 in both zero-shot and few-shot settings for requirements classification. The question arises as to how these models compare to traditional classification methods, specifically Support Vector Machine and Long Short-Term Memory. Based on five different datasets, our results show that there is no single best technique for all types of requirement classes. Interestingly, the few-shot setting has been found to be beneficial primarily in scenarios where zero-shot results are significantly low.
- Abstract(参考訳): 近年、ChatGPTのような大規模言語モデルは、様々な自然言語処理タスクにおいて顕著な能力を発揮している。
要求工学におけるそれらの応用、特に要求分類における応用は、ますます関心を集めている。
本稿では,2つのChatGPTモデル,特に gpt-3.5-turbo と gpt-4 を,ゼロショットと少数ショットの両方の要件分類において広範囲に評価した。
この問題は、これらのモデルが従来の分類手法、具体的にはベクターマシンとロング短期記憶をどう比較するかという問題である。
5つの異なるデータセットに基づいて、この結果から、すべてのタイプの要求クラスに最適なテクニックは存在しないことが判明した。
興味深いことに、いくつかのショット設定は、主にゼロショット結果が著しく低いシナリオで有用であることが判明した。
関連論文リスト
- The Art of Saying No: Contextual Noncompliance in Language Models [123.383993700586]
本稿では,ユーザの要求に従わないモデルについて,コンテキスト非準拠の包括的分類を導入する。
我々の分類は、不完全、不完全、不完全、不決定、人為的要求を含む幅広いカテゴリーにまたがる。
言語モデルの非準拠性をテストするために,1000個の非準拠プロンプトの新たな評価スイートを開発するために,この分類法を用いる。
論文 参考訳(メタデータ) (2024-07-02T07:12:51Z) - Generative Multi-modal Models are Good Class-Incremental Learners [51.5648732517187]
クラス増分学習のための新しい生成型マルチモーダルモデル(GMM)フレームワークを提案する。
提案手法は適応生成モデルを用いて画像のラベルを直接生成する。
Few-shot CIL設定では、現在の最先端のすべてのメソッドに対して少なくとも14%精度が向上し、忘れてはならない。
論文 参考訳(メタデータ) (2024-03-27T09:21:07Z) - Language Models for Text Classification: Is In-Context Learning Enough? [54.869097980761595]
最近の基礎言語モデルでは、ゼロショットや少数ショットの設定で多くのNLPタスクで最先端のパフォーマンスが示されている。
より標準的なアプローチよりもこれらのモデルの利点は、自然言語(prompts)で書かれた命令を理解する能力である。
これにより、アノテーション付きインスタンスが限られているドメインのテキスト分類問題に対処するのに適している。
論文 参考訳(メタデータ) (2024-03-26T12:47:39Z) - Efficient Classification of Student Help Requests in Programming Courses
Using Large Language Models [2.5949084781328744]
本研究では,GPT-3.5 モデルと GPT-4 モデルを用いて,導入プログラミングクラスにおける学生のヘルプ要求の分類を行った。
GPT-3.5モデルの微調整により性能が向上し、2人のラッカー間で観察されたカテゴリ間の精度と一貫性が近似された。
論文 参考訳(メタデータ) (2023-10-31T00:56:33Z) - Large language models for aspect-based sentiment analysis [0.0]
GPT-4 と GPT-3.5 の性能をゼロショット, 少ないショット, 微調整で評価した。
微調整 GPT-3.5 は、共同アスペクト項抽出と極性分類タスクにおいて最先端の F1 スコア 83.8 を達成する。
論文 参考訳(メタデータ) (2023-10-27T10:03:21Z) - Investigating the Limitation of CLIP Models: The Worst-Performing
Categories [53.360239882501325]
コントラスト言語-画像事前学習(CLIP)は、自然言語を視覚概念に統合する基礎モデルを提供する。
通常、十分に設計されたテキストプロンプトによって、多くの領域で満足な全体的な精度が達成できると期待されている。
しかし、最悪のカテゴリにおけるパフォーマンスは、全体的なパフォーマンスよりも著しく劣っていることがわかった。
論文 参考訳(メタデータ) (2023-10-05T05:37:33Z) - Empirical Evaluation of ChatGPT on Requirements Information Retrieval
Under Zero-Shot Setting [12.733403458944972]
要求情報検索タスクにおいてChatGPTの性能を実証的に評価する。
ゼロショット設定では、ChatGPTが要求情報を検索する有望な能力を示す。
論文 参考訳(メタデータ) (2023-04-25T04:09:45Z) - Attention is Not Always What You Need: Towards Efficient Classification
of Domain-Specific Text [1.1508304497344637]
階層構造に整理された数百のクラスを持つ大規模ITコーパスでは、階層構造における上位レベルのクラスの正確な分類が不可欠である。
ビジネスの世界では、高額なブラックボックスモデルよりも効率的で説明可能なMLモデルが好まれる。
PLMが広く使われているにもかかわらず、これらのモデルがドメイン固有のテキスト分類に使われている理由として、明確で明確な必要性が欠如している。
論文 参考訳(メタデータ) (2023-03-31T03:17:23Z) - Large Language Models in the Workplace: A Case Study on Prompt
Engineering for Job Type Classification [58.720142291102135]
本研究では,実環境における職種分類の課題について検討する。
目標は、英語の求職が卒業生やエントリーレベルの地位に適切かどうかを判断することである。
論文 参考訳(メタデータ) (2023-03-13T14:09:53Z) - Fine-grained Angular Contrastive Learning with Coarse Labels [72.80126601230447]
教師付きおよび自己監督型コントラスト前訓練を効果的に組み合わせることができる新しい「Angularの正規化」モジュールを紹介します。
この研究は、C2FS分類のこの新しい、挑戦的で、非常に実用的なトピックに関する将来の研究の道を開くのに役立ちます。
論文 参考訳(メタデータ) (2020-12-07T08:09:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。