論文の概要: The Art of Saying No: Contextual Noncompliance in Language Models
- arxiv url: http://arxiv.org/abs/2407.12043v2
- Date: Fri, 22 Nov 2024 17:48:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-25 15:01:55.267824
- Title: The Art of Saying No: Contextual Noncompliance in Language Models
- Title(参考訳): Noを言う技術:言語モデルにおける文脈的非コンプライアンス
- Authors: Faeze Brahman, Sachin Kumar, Vidhisha Balachandran, Pradeep Dasigi, Valentina Pyatkin, Abhilasha Ravichander, Sarah Wiegreffe, Nouha Dziri, Khyathi Chandu, Jack Hessel, Yulia Tsvetkov, Noah A. Smith, Yejin Choi, Hannaneh Hajishirzi,
- Abstract要約: 本稿では,ユーザの要求に従わないモデルについて,コンテキスト非準拠の包括的分類を導入する。
我々の分類は、不完全、不完全、不完全、不決定、人為的要求を含む幅広いカテゴリーにまたがる。
言語モデルの非準拠性をテストするために,1000個の非準拠プロンプトの新たな評価スイートを開発するために,この分類法を用いる。
- 参考スコア(独自算出の注目度): 123.383993700586
- License:
- Abstract: Chat-based language models are designed to be helpful, yet they should not comply with every user request. While most existing work primarily focuses on refusal of "unsafe" queries, we posit that the scope of noncompliance should be broadened. We introduce a comprehensive taxonomy of contextual noncompliance describing when and how models should not comply with user requests. Our taxonomy spans a wide range of categories including incomplete, unsupported, indeterminate, and humanizing requests (in addition to unsafe requests). To test noncompliance capabilities of language models, we use this taxonomy to develop a new evaluation suite of 1000 noncompliance prompts. We find that most existing models show significantly high compliance rates in certain previously understudied categories with models like GPT-4 incorrectly complying with as many as 30% of requests. To address these gaps, we explore different training strategies using a synthetically-generated training set of requests and expected noncompliant responses. Our experiments demonstrate that while direct finetuning of instruction-tuned models can lead to both over-refusal and a decline in general capabilities, using parameter efficient methods like low rank adapters helps to strike a good balance between appropriate noncompliance and other capabilities.
- Abstract(参考訳): チャットベースの言語モデルは役に立つように設計されていますが、すべてのユーザ要求に準拠すべきではありません。
ほとんどの既存の作業は、主に"安全でない"クエリの拒否に焦点を当てていますが、非準拠の範囲を広げるべきです。
本稿では,ユーザの要求に従わないモデルについて,コンテキスト非準拠の包括的分類を導入する。
我々の分類は、(安全でない要求に加えて)不完全、不完全、不完全、不決定、人為的要求を含む幅広いカテゴリにまたがる。
言語モデルの非準拠性をテストするために,1000個の非準拠プロンプトの新たな評価スイートを開発するために,この分類法を用いる。
既存のモデルでは、GPT-4のようなモデルが30%の要求に誤って従わなかった場合、すでに検討されているカテゴリにおいて、かなり高いコンプライアンス率を示すことが分かりました。
これらのギャップに対処するために、合成生成された要求と予測された非準拠応答を用いて、異なるトレーニング戦略を探索する。
提案実験は,命令調整モデルを直接微調整することで,過度な拒絶と一般能力の低下につながるが,低ランクアダプタのようなパラメータ効率のよい手法を用いることで,適切な非準拠性と他の機能とのバランスが整うことができることを示した。
関連論文リスト
- Reducing the Scope of Language Models with Circuit Breakers [7.464494269745494]
2つの代表的な言語モデルはスコープが低く、対処すべきでないクエリに応答できることを示します。
本稿では,最近提案された一般的なアライメント手法であるCircuit Breakersが,言語モデルに非常に具体的なタスクに適応可能であることを示す。
論文 参考訳(メタデータ) (2024-10-28T23:06:57Z) - OLMES: A Standard for Language Model Evaluations [64.85905119836818]
再現可能な言語モデル評価のための実用的でオープンな標準であるOLMESを提案する。
我々は,コミュニティが採用する評価実践において,様々な要因を特定し,検討する。
OLMESは、複数の質問の非自然な「閉じた」定式化を必要とする小さなベースモデル間の有意義な比較をサポートする。
論文 参考訳(メタデータ) (2024-06-12T17:37:09Z) - RLVF: Learning from Verbal Feedback without Overgeneralization [94.19501420241188]
本稿では,このような過度な一般化を伴わずに,言語フィードバックを取り入れることの課題について検討する。
制約付き選好最適化(C3PO)を用いた新しい文脈的批評手法を開発した。
提案手法は,他の文脈に対する既存行動を維持しながら,関連するシナリオに対して効果的な言語フィードバックを適用する。
論文 参考訳(メタデータ) (2024-02-16T18:50:24Z) - Prompting or Fine-tuning? A Comparative Study of Large Language Models
for Taxonomy Construction [0.8670827427401335]
構造的制約を考慮した分類学構築のための一般的な枠組みを提案する。
我々は,超音速分類法と新しいコンピュータサイエンス分類法データセットで実施される即興的および微調整的アプローチを比較した。
論文 参考訳(メタデータ) (2023-09-04T16:53:17Z) - Teaching Smaller Language Models To Generalise To Unseen Compositional
Questions [6.9076450524134145]
多様な推論能力を具現化するために,最大93タスクのマルチタスク事前学習の組み合わせを提案する。
検索強化トレーニングデータセットを追加することにより,性能が大幅に向上することを示す。
論文 参考訳(メタデータ) (2023-08-02T05:00:12Z) - POUF: Prompt-oriented unsupervised fine-tuning for large pre-trained
models [62.23255433487586]
モデルに微調整を施したり、ラベルのないターゲットデータにプロンプトを施したりするための教師なしの微調整フレームワークを提案する。
本稿では,プロンプトとターゲットデータから抽出した離散分布を整列させて,言語拡張視覚とマスキング言語モデルの両方に適用する方法を示す。
論文 参考訳(メタデータ) (2023-04-29T22:05:22Z) - Fairness-guided Few-shot Prompting for Large Language Models [93.05624064699965]
インコンテキスト学習は、トレーニング例、例えば順、プロンプトフォーマットのバリエーションによって、高い不安定性に悩まされる可能性がある。
ラベルや属性に対する固定的なプロンプトの予測バイアスを評価するための指標を導入する。
そこで本研究では,テキスト内学習の性能向上のための最寄りのプロンプトを特定するための,欲求探索に基づく新しい探索手法を提案する。
論文 参考訳(メタデータ) (2023-03-23T12:28:25Z) - Exploring Strategies for Generalizable Commonsense Reasoning with
Pre-trained Models [62.28551903638434]
モデルの一般化と精度に及ぼす3つの異なる適応法の影響を計測する。
2つのモデルを用いた実験では、微調整はタスクの内容と構造の両方を学習することで最もうまく機能するが、過度に適合し、新しい答えへの限定的な一般化に苦しむ。
我々は、プレフィックスチューニングのような代替適応手法が同等の精度を持つのを観察するが、解を見落とさずに一般化し、対数分割に対してより堅牢である。
論文 参考訳(メタデータ) (2021-09-07T03:13:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。