論文の概要: How well ChatGPT understand Malaysian English? An Evaluation on Named Entity Recognition and Relation Extraction
- arxiv url: http://arxiv.org/abs/2311.11583v2
- Date: Fri, 28 Jun 2024 15:01:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-01 22:04:23.464562
- Title: How well ChatGPT understand Malaysian English? An Evaluation on Named Entity Recognition and Relation Extraction
- Title(参考訳): ChatGPTはマレーシア英語をどの程度理解しているか? 名前付きエンティティ認識と関係抽出の評価
- Authors: Mohan Raj Chanthran, Lay-Ki Soon, Huey Fang Ong, Bhawani Selvaretnam,
- Abstract要約: マレーシア英語ニュースデータセットからエンティティと関係を抽出するChatGPTの機能を評価する。
ChatGPTはマレーシアの英語ニュース記事からエンティティを抽出するのにはあまり効果がなく、F1スコアは0.497である。
- 参考スコア(独自算出の注目度): 1.8241632171540025
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, ChatGPT has attracted a lot of interest from both researchers and the general public. While the performance of ChatGPT in named entity recognition and relation extraction from Standard English texts is satisfactory, it remains to be seen if it can perform similarly for Malaysian English. Malaysian English is unique as it exhibits morphosyntactic and semantical adaptation from local contexts. In this study, we assess ChatGPT's capability in extracting entities and relations from the Malaysian English News (MEN) dataset. We propose a three-step methodology referred to as \textbf{\textit{educate-predict-evaluate}}. The performance of ChatGPT is assessed using F1-Score across 18 unique prompt settings, which were carefully engineered for a comprehensive review. From our evaluation, we found that ChatGPT does not perform well in extracting entities from Malaysian English news articles, with the highest F1-Score of 0.497. Further analysis shows that the morphosyntactic adaptation in Malaysian English caused the limitation. However, interestingly, this morphosyntactic adaptation does not impact the performance of ChatGPT for relation extraction.
- Abstract(参考訳): 最近、ChatGPTは研究者と一般大衆の両方から多くの関心を集めている。
標準英語テキストから名前付きエンティティ認識と関係抽出におけるChatGPTの性能は良好であるが、マレーシア英語でも同様に機能するかどうかは不明だ。
マレーシア英語は、現地の文脈から形態的・意味的な適応を示すため、独特である。
本研究では,マレーシア英語ニュース(MEN)データセットから実体と関係を抽出するChatGPTの機能を評価する。
本稿では,「textbf{\textit{educate-predict-evaluate}}」と呼ばれる3段階の方法論を提案する。
ChatGPTの性能は18種類のプロンプト設定にまたがってF1-Scoreを用いて評価される。
評価の結果,ChatGPTはマレーシア英語ニュース記事からのエンティティ抽出にはあまり効果がなく,F1スコアは0.497であることがわかった。
さらに分析したところ、マレーシア英語のモルフォシンタクティック適応は制限を引き起こした。
興味深いことに、この形態素的適応は関係抽出のためのChatGPTの性能に影響を与えない。
関連論文リスト
- Is ChatGPT Involved in Texts? Measure the Polish Ratio to Detect
ChatGPT-Generated Text [48.36706154871577]
我々はHPPT(ChatGPT-polished academic abstracts)と呼ばれる新しいデータセットを紹介する。
純粋なChatGPT生成テキストの代わりに、人書きとChatGPTポリケートされた抽象文のペアを構成することで、既存のコーパスから分岐する。
また,ChatGPTによる修正の度合いを,オリジナルの人文テキストと比較した革新的な尺度であるPolish Ratio法を提案する。
論文 参考訳(メタデータ) (2023-07-21T06:38:37Z) - GPTAraEval: A Comprehensive Evaluation of ChatGPT on Arabic NLP [21.6253870440136]
本研究は,44の言語理解・生成タスクを含むChatGPTの大規模自動・人為的評価を行う。
以上の結果から,ChatGPTは英語における顕著な性能にもかかわらず,アラビア語を微調整した小型モデルでは一貫して上回っていることが示唆された。
論文 参考訳(メタデータ) (2023-05-24T10:12:39Z) - Is Information Extraction Solved by ChatGPT? An Analysis of Performance,
Evaluation Criteria, Robustness and Errors [14.911130381374793]
最初にChatGPTのパフォーマンスを、ゼロショット、少数ショット、チェーンオブ思考のシナリオの下で14のIEサブタスクを持つ17のデータセットで評価した。
次に、14のIEサブタスクにおけるChatGPTのロバスト性を分析し、1)ChatGPTが無効な応答をほとんど出力しないこと、2)ChatGPTの性能に関係のないコンテキストと長期ターゲットタイプが大きな影響を与えること、3)ChatGPTはREタスクにおける主観的対象関係をうまく理解できないこと、を見出した。
論文 参考訳(メタデータ) (2023-05-23T18:17:43Z) - ChatLog: Carefully Evaluating the Evolution of ChatGPT Across Time [54.18651663847874]
ChatGPTは大きな成功をおさめ、インフラ的な地位を得たと考えられる。
既存のベンチマークでは,(1)周期的評価の無視,(2)きめ細かい特徴の欠如という2つの課題に直面する。
2023年3月から現在まで,21のNLPベンチマークに対して,さまざまな長文ChatGPT応答を大規模に記録した常時更新データセットであるChatLogを構築している。
論文 参考訳(メタデータ) (2023-04-27T11:33:48Z) - Evaluating ChatGPT's Information Extraction Capabilities: An Assessment
of Performance, Explainability, Calibration, and Faithfulness [18.945934162722466]
7つのきめ細かい情報抽出(IE)タスクを用いてChatGPTの全体的な能力を評価することに集中する。
標準IE設定でのChatGPTのパフォーマンスは劣っているが、OpenIE設定では驚くほど優れたパフォーマンスを示している。
ChatGPTは、その決定に対して高品質で信頼できる説明を提供する。
論文 参考訳(メタデータ) (2023-04-23T12:33:18Z) - ChatGPT-Crawler: Find out if ChatGPT really knows what it's talking
about [15.19126287569545]
本研究では,異なる対話型QAコーパスからChatGPTが生成する応答について検討する。
この研究はBERT類似度スコアを用いて、これらの回答を正しい回答と比較し、自然言語推論(NLI)ラベルを得る。
調査では、ChatGPTが質問に対する誤った回答を提供し、モデルがエラーを起こしやすい領域について洞察を与えている事例を特定した。
論文 参考訳(メタデータ) (2023-04-06T18:42:47Z) - Is ChatGPT a Good NLG Evaluator? A Preliminary Study [121.77986688862302]
NLG測定値として信頼性を示すため,ChatGPTのメタ評価を行った。
実験の結果,ChatGPTは従来の自動測定値と比較して,人間の判断と最先端あるいは競合的な相関を達成できた。
我々の予備研究は、汎用的な信頼性のあるNLGメトリックの出現を促すことを願っている。
論文 参考訳(メタデータ) (2023-03-07T16:57:20Z) - Can ChatGPT Understand Too? A Comparative Study on ChatGPT and
Fine-tuned BERT [103.57103957631067]
チャットGPTは、人間の質問に対する流動的で高品質な応答を生成できるため、大きな注目を集めている。
そこで我々は,ChatGPTの理解能力を,最も人気のあるGLUEベンチマークで評価し,より詳細な4種類のBERTスタイルのモデルと比較した。
2)ChatGPTは,感情分析や質問応答タスクにおいて,BERTと同等のパフォーマンスを達成している。
論文 参考訳(メタデータ) (2023-02-19T12:29:33Z) - Is ChatGPT a General-Purpose Natural Language Processing Task Solver? [113.22611481694825]
大規模言語モデル(LLM)は、さまざまな自然言語処理(NLP)タスクをゼロショットで実行できることを実証している。
近年、ChatGPTのデビューは自然言語処理(NLP)コミュニティから大きな注目を集めている。
ChatGPTが多くのNLPタスクをゼロショットで実行できるジェネラリストモデルとして機能するかどうかはまだ分かっていない。
論文 参考訳(メタデータ) (2023-02-08T09:44:51Z) - Is ChatGPT A Good Translator? Yes With GPT-4 As The Engine [97.8609714773255]
機械翻訳におけるChatGPTの評価には,翻訳プロンプト,多言語翻訳,翻訳堅牢性などが含まれる。
ChatGPTは商用翻訳製品と競合するが、低リソースや遠方の言語では遅れている。
GPT-4エンジンの打ち上げにより、ChatGPTの翻訳性能は大幅に向上した。
論文 参考訳(メタデータ) (2023-01-20T08:51:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。