論文の概要: Double-Condensing Attention Condenser: Leveraging Attention in Deep Learning to Detect Skin Cancer from Skin Lesion Images
- arxiv url: http://arxiv.org/abs/2311.11656v2
- Date: Fri, 18 Oct 2024 02:34:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-21 14:22:08.401205
- Title: Double-Condensing Attention Condenser: Leveraging Attention in Deep Learning to Detect Skin Cancer from Skin Lesion Images
- Title(参考訳): ダブルコンデンシング・アテンション・コンデンサ:深層学習における注意の活用による皮膚病変画像からの皮膚癌検出
- Authors: Chi-en Amy Tai, Elizabeth Janes, Chris Czarnecki, Alexander Wong,
- Abstract要約: 皮膚がんはアメリカ合衆国で最も一般的な種類のがんであり、5人に1人のアメリカ人に影響を与えると推定されている。
近年の進歩は,SIIM-ISICメラノーマ分類チャレンジのアートパフォーマンスの状況から,皮膚がん検出に強い効果を示している。
本稿では,皮膚病変画像の皮膚癌検出に効率的な自己注意構造を活用し,皮膚病変画像からの皮膚癌検出をカスタマイズしたDC-ACを用いたディープニューラルネットワーク設計を提案する。
- 参考スコア(独自算出の注目度): 61.36288157482697
- License:
- Abstract: Skin cancer is the most common type of cancer in the United States and is estimated to affect one in five Americans. Recent advances have demonstrated strong performance on skin cancer detection, as exemplified by state of the art performance in the SIIM-ISIC Melanoma Classification Challenge; however these solutions leverage ensembles of complex deep neural architectures requiring immense storage and compute costs, and therefore may not be tractable. A recent movement for TinyML applications is integrating Double-Condensing Attention Condensers (DC-AC) into a self-attention neural network backbone architecture to allow for faster and more efficient computation. This paper explores leveraging an efficient self-attention structure to detect skin cancer in skin lesion images and introduces a deep neural network design with DC-AC customized for skin cancer detection from skin lesion images. The final model is publicly available as a part of a global open-source initiative dedicated to accelerating advancement in machine learning to aid clinicians in the fight against cancer. Future work of this research includes iterating on the design of the selected network architecture and refining the approach to generalize to other forms of cancer.
- Abstract(参考訳): 皮膚がんはアメリカ合衆国で最も一般的な種類のがんであり、5人に1人のアメリカ人に影響を与えると推定されている。
近年の進歩は、SIIM-ISICメラノーマ分類チャレンジ(英語版)における最先端のパフォーマンスによって示されるように、皮膚がんの検出に強い性能を示しているが、これらのソリューションは、膨大なストレージと計算コストを必要とする複雑な深部神経アーキテクチャのアンサンブルを利用するため、抽出不可能である可能性がある。
TinyMLアプリケーションの最近の動きは、より高速で効率的な計算を可能にするために、Double-Condensing Attention Condensers (DC-AC)を自己アテンションニューラルネットワークのバックボーンアーキテクチャに統合することである。
本稿では,皮膚病変画像の皮膚癌検出に効率的な自己注意構造を活用し,皮膚病変画像からの皮膚癌検出をカスタマイズしたDC-ACを用いたディープニューラルネットワーク設計を提案する。
最終モデルは、がんと戦う臨床医を支援する機械学習の進歩を加速するための、グローバルなオープンソースイニシアチブの一部として、一般公開されている。
本研究の今後の成果は、選択したネットワークアーキテクチャの設計を反復し、他の種類のがんに一般化するためのアプローチを改善することである。
関連論文リスト
- An Interpretable Deep Learning Approach for Skin Cancer Categorization [0.0]
我々は、皮膚がん検出の問題に対処するために、現代のディープラーニング手法と説明可能な人工知能(XAI)アプローチを使用する。
皮膚病変の分類には,XceptionNet,EfficientNetV2S,InceptionResNetV2,EfficientNetV2Mの4つの最先端事前訓練モデルを用いる。
我々の研究は、ディープラーニングと説明可能な人工知能(XAI)が皮膚がんの診断をどのように改善するかを示している。
論文 参考訳(メタデータ) (2023-12-17T12:11:38Z) - Cancer-Net PCa-Gen: Synthesis of Realistic Prostate Diffusion Weighted
Imaging Data via Anatomic-Conditional Controlled Latent Diffusion [68.45407109385306]
カナダでは、前立腺がんは男性でもっとも一般的ながんであり、2022年のこの人口統計では、新しいがん症例の20%を占めている。
拡散強調画像(DWI)データを用いた前立腺癌診断,予後,治療計画のためのディープニューラルネットワークの開発には大きな関心が寄せられている。
本研究では,解剖学的条件制御型潜伏拡散戦略の導入により,現実的な前立腺DWIデータを生成するための潜伏拡散の有効性について検討した。
論文 参考訳(メタデータ) (2023-11-30T15:11:03Z) - A Multi-Institutional Open-Source Benchmark Dataset for Breast Cancer
Clinical Decision Support using Synthetic Correlated Diffusion Imaging Data [82.74877848011798]
Cancer-Net BCaは、乳がん患者の画像データであるボリュームCDI$s$の複数機関のオープンソースベンチマークデータセットである。
Cancer-Net BCaは、機械学習の進歩を加速し、がんと戦う臨床医を助ける、グローバルなオープンソースイニシアチブの一部として、一般公開されている。
論文 参考訳(メタデータ) (2023-04-12T05:41:44Z) - Attention Swin U-Net: Cross-Contextual Attention Mechanism for Skin
Lesion Segmentation [4.320393382724066]
我々は,注目度に基づくSwin U-Net拡張であるAtt-SwinU-Netを医用画像セグメンテーションのために提案する。
我々は、スキップ接続経路で使用される古典的連結操作は、注意機構を組み込むことで、さらに改善できると論じる。
論文 参考訳(メタデータ) (2022-10-30T17:41:35Z) - SSD-KD: A Self-supervised Diverse Knowledge Distillation Method for
Lightweight Skin Lesion Classification Using Dermoscopic Images [62.60956024215873]
皮膚がんは最も一般的な悪性腫瘍の1つであり、人口に影響を与え、世界中で経済的な重荷を負っている。
皮膚がん検出のほとんどの研究は、ポータブルデバイス上での計算資源の制限を考慮せずに、高い予測精度を追求している。
本研究は,皮膚疾患分類のための汎用的なKDフレームワークに多様な知識を統一する,SSD-KDと呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2022-03-22T06:54:29Z) - A Smartphone based Application for Skin Cancer Classification Using Deep
Learning with Clinical Images and Lesion Information [1.8199326045904993]
ディープニューラルネットワーク(DNN)は皮膚がんの検出に有効である。
本研究では,スマートフォンを用いた皮膚がん検出支援アプリケーションを提案する。
論文 参考訳(メタデータ) (2021-04-28T16:51:00Z) - CancerNet-SCa: Tailored Deep Neural Network Designs for Detection of
Skin Cancer from Dermoscopy Images [71.68436132514542]
皮膚がんはアメリカ合衆国で最も頻繁に診断されるがんである。
本研究では,皮膚内視鏡画像から皮膚がんを検出するための深層神経回路の設計手法である CancerNet-SCa について紹介する。
論文 参考訳(メタデータ) (2020-11-21T02:17:59Z) - Stan: Small tumor-aware network for breast ultrasound image segmentation [68.8204255655161]
本研究では,小腫瘍認識ネットワーク(Small tumor-Aware Network,STAN)と呼ばれる新しいディープラーニングアーキテクチャを提案する。
提案手法は, 乳腺腫瘍の分節化における最先端のアプローチよりも優れていた。
論文 参考訳(メタデータ) (2020-02-03T22:25:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。