PMP-Swin: Multi-Scale Patch Message Passing Swin Transformer for Retinal
Disease Classification
- URL: http://arxiv.org/abs/2311.11669v1
- Date: Mon, 20 Nov 2023 11:09:09 GMT
- Title: PMP-Swin: Multi-Scale Patch Message Passing Swin Transformer for Retinal
Disease Classification
- Authors: Zhihan Yang, Zhiming Cheng, Tengjin Weng, Shucheng He, Yaqi Wang, Xin
Ye, Shuai Wang
- Abstract summary: We propose a new framework named Multi-Scale Patch Message Passing Swin Transformer for multi-class retinal disease classification.
Specifically, we design a Patch Message Passing (PMP) module based on the Message Passing mechanism to establish global interaction for pathological semantic features.
- Score: 9.651435376561741
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Retinal disease is one of the primary causes of visual impairment, and early
diagnosis is essential for preventing further deterioration. Nowadays, many
works have explored Transformers for diagnosing diseases due to their strong
visual representation capabilities. However, retinal diseases exhibit milder
forms and often present with overlapping signs, which pose great difficulties
for accurate multi-class classification. Therefore, we propose a new framework
named Multi-Scale Patch Message Passing Swin Transformer for multi-class
retinal disease classification. Specifically, we design a Patch Message Passing
(PMP) module based on the Message Passing mechanism to establish global
interaction for pathological semantic features and to exploit the subtle
differences further between different diseases. Moreover, considering the
various scale of pathological features we integrate multiple PMP modules for
different patch sizes. For evaluation, we have constructed a new dataset, named
OPTOS dataset, consisting of 1,033 high-resolution fundus images photographed
by Optos camera and conducted comprehensive experiments to validate the
efficacy of our proposed method. And the results on both the public dataset and
our dataset demonstrate that our method achieves remarkable performance
compared to state-of-the-art methods.
Related papers
- Benchmarking In-the-wild Multimodal Disease Recognition and A Versatile Baseline [42.49727243388804]
We propose an in-the-wild multimodal plant disease recognition dataset.
It contains the largest number of disease classes but also text-based descriptions for each disease.
Our proposed dataset can be regarded as an ideal testbed for evaluating disease recognition methods in the real world.
arXiv Detail & Related papers (2024-08-06T11:49:13Z) - PLUTO: Pathology-Universal Transformer [4.920983796208486]
We propose PathoLogy Universal TransfOrmer (PLUTO): a light-weight pathology FM that is pre-trained on a diverse dataset of 195 million image tiles.
We design task-specific adaptation heads that utilize PLUTO's output embeddings for tasks which span pathology scales.
We find that PLUTO matches or outperforms existing task-specific baselines and pathology-specific foundation models.
arXiv Detail & Related papers (2024-05-13T16:40:17Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
This paper introduces a novel lightweight multi-level adaptation and comparison framework to repurpose the CLIP model for medical anomaly detection.
Our approach integrates multiple residual adapters into the pre-trained visual encoder, enabling a stepwise enhancement of visual features across different levels.
Our experiments on medical anomaly detection benchmarks demonstrate that our method significantly surpasses current state-of-the-art models.
arXiv Detail & Related papers (2024-03-19T09:28:19Z) - AMLP:Adaptive Masking Lesion Patches for Self-supervised Medical Image
Segmentation [67.97926983664676]
Self-supervised masked image modeling has shown promising results on natural images.
However, directly applying such methods to medical images remains challenging.
We propose a novel self-supervised medical image segmentation framework, Adaptive Masking Lesion Patches (AMLP)
arXiv Detail & Related papers (2023-09-08T13:18:10Z) - The Whole Pathological Slide Classification via Weakly Supervised
Learning [7.313528558452559]
We introduce two pathological priors: nuclear disease of cells and spatial correlation of pathological tiles.
We propose a data augmentation method that utilizes stain separation during extractor training.
We then describe the spatial relationships between the tiles using an adjacency matrix.
By integrating these two views, we designed a multi-instance framework for analyzing H&E-stained tissue images.
arXiv Detail & Related papers (2023-07-12T16:14:23Z) - HST-MRF: Heterogeneous Swin Transformer with Multi-Receptive Field for
Medical Image Segmentation [5.51045524851432]
We propose a Heterogeneous Swin Transformer with Multi-Receptive Field (HST-MRF) model for medical image segmentation.
The main purpose is to solve the problem of loss of structural information caused by patch segmentation using transformer.
Experimental results show that our proposed method outperforms state-of-the-art models and can achieve superior performance.
arXiv Detail & Related papers (2023-04-10T14:30:03Z) - MedSegDiff-V2: Diffusion based Medical Image Segmentation with
Transformer [53.575573940055335]
We propose a novel Transformer-based Diffusion framework, called MedSegDiff-V2.
We verify its effectiveness on 20 medical image segmentation tasks with different image modalities.
arXiv Detail & Related papers (2023-01-19T03:42:36Z) - Hierarchical Transformer for Survival Prediction Using Multimodality
Whole Slide Images and Genomics [63.76637479503006]
Learning good representation of giga-pixel level whole slide pathology images (WSI) for downstream tasks is critical.
This paper proposes a hierarchical-based multimodal transformer framework that learns a hierarchical mapping between pathology images and corresponding genes.
Our architecture requires fewer GPU resources compared with benchmark methods while maintaining better WSI representation ability.
arXiv Detail & Related papers (2022-11-29T23:47:56Z) - Multi-Label Retinal Disease Classification using Transformers [0.0]
A new multi-label retinal disease dataset, MuReD, is constructed, using a number of publicly available datasets for fundus disease classification.
A transformer-based model optimized through extensive experimentation is used for image analysis and decision making.
It is shown that the approach performs better than state-of-the-art works on the same task by 7.9% and 8.1% in terms of AUC score for disease detection and disease classification.
arXiv Detail & Related papers (2022-07-05T22:06:52Z) - AlignTransformer: Hierarchical Alignment of Visual Regions and Disease
Tags for Medical Report Generation [50.21065317817769]
We propose an AlignTransformer framework, which includes the Align Hierarchical Attention (AHA) and the Multi-Grained Transformer (MGT) modules.
Experiments on the public IU-Xray and MIMIC-CXR datasets show that the AlignTransformer can achieve results competitive with state-of-the-art methods on the two datasets.
arXiv Detail & Related papers (2022-03-18T13:43:53Z) - A Hierarchical Transformation-Discriminating Generative Model for Few
Shot Anomaly Detection [93.38607559281601]
We devise a hierarchical generative model that captures the multi-scale patch distribution of each training image.
The anomaly score is obtained by aggregating the patch-based votes of the correct transformation across scales and image regions.
arXiv Detail & Related papers (2021-04-29T17:49:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.