Multi-Label Retinal Disease Classification using Transformers
- URL: http://arxiv.org/abs/2207.02335v2
- Date: Thu, 7 Jul 2022 15:19:45 GMT
- Title: Multi-Label Retinal Disease Classification using Transformers
- Authors: M. A. Rodriguez, H. AlMarzouqi and P. Liatsis (Department of
Electrical Engineering and Computer Science, Khalifa University)
- Abstract summary: A new multi-label retinal disease dataset, MuReD, is constructed, using a number of publicly available datasets for fundus disease classification.
A transformer-based model optimized through extensive experimentation is used for image analysis and decision making.
It is shown that the approach performs better than state-of-the-art works on the same task by 7.9% and 8.1% in terms of AUC score for disease detection and disease classification.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Early detection of retinal diseases is one of the most important means of
preventing partial or permanent blindness in patients. In this research, a
novel multi-label classification system is proposed for the detection of
multiple retinal diseases, using fundus images collected from a variety of
sources. First, a new multi-label retinal disease dataset, the MuReD dataset,
is constructed, using a number of publicly available datasets for fundus
disease classification. Next, a sequence of post-processing steps is applied to
ensure the quality of the image data and the range of diseases, present in the
dataset. For the first time in fundus multi-label disease classification, a
transformer-based model optimized through extensive experimentation is used for
image analysis and decision making. Numerous experiments are performed to
optimize the configuration of the proposed system. It is shown that the
approach performs better than state-of-the-art works on the same task by 7.9%
and 8.1% in terms of AUC score for disease detection and disease
classification, respectively. The obtained results further support the
potential applications of transformer-based architectures in the medical
imaging field.
Related papers
- A better approach to diagnose retinal diseases: Combining our Segmentation-based Vascular Enhancement with deep learning features [3.717366858126521]
Abnormalities in retinal fundus images may indicate certain pathologies.
In conventional medicine, the diagnosis of retina-related diseases relies on a physician's subjective assessment of the retinal fundus images.
This paper proposes a fast, objective, and accurate method for the diagnosis of diseases related to retinal fundus images.
arXiv Detail & Related papers (2024-05-25T13:52:40Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
This paper introduces a novel lightweight multi-level adaptation and comparison framework to repurpose the CLIP model for medical anomaly detection.
Our approach integrates multiple residual adapters into the pre-trained visual encoder, enabling a stepwise enhancement of visual features across different levels.
Our experiments on medical anomaly detection benchmarks demonstrate that our method significantly surpasses current state-of-the-art models.
arXiv Detail & Related papers (2024-03-19T09:28:19Z) - PMP-Swin: Multi-Scale Patch Message Passing Swin Transformer for Retinal
Disease Classification [9.651435376561741]
We propose a new framework named Multi-Scale Patch Message Passing Swin Transformer for multi-class retinal disease classification.
Specifically, we design a Patch Message Passing (PMP) module based on the Message Passing mechanism to establish global interaction for pathological semantic features.
arXiv Detail & Related papers (2023-11-20T11:09:09Z) - MedFMC: A Real-world Dataset and Benchmark For Foundation Model
Adaptation in Medical Image Classification [41.16626194300303]
Foundation models, often pre-trained with large-scale data, have achieved paramount success in jump-starting various vision and language applications.
Recent advances further enable adapting foundation models in downstream tasks efficiently using only a few training samples.
Yet, the application of such learning paradigms in medical image analysis remains scarce due to the shortage of publicly accessible data and benchmarks.
arXiv Detail & Related papers (2023-06-16T01:46:07Z) - A Novel Vision Transformer with Residual in Self-attention for
Biomedical Image Classification [8.92307560991779]
This article presents the novel framework of multi-head self-attention for vision transformer (ViT)
The proposed method uses the concept of residual connection for accumulating the best attention output in each block of multi-head attention.
The results show the significant improvement over traditional ViT and other convolution based state-of-the-art classification models.
arXiv Detail & Related papers (2023-06-02T15:06:14Z) - Anomaly Detection in Retinal Images using Multi-Scale Deep Feature
Sparse Coding [30.097208168480826]
We introduce an unsupervised approach for detecting anomalies in retinal images to overcome this issue.
We achieve relative AUC score improvement of 7.8%, 6.7% and 12.1% over state-of-the-art SPADE on Eye-Q, IDRiD and OCTID datasets respectively.
arXiv Detail & Related papers (2022-01-27T13:36:22Z) - Cross-Site Severity Assessment of COVID-19 from CT Images via Domain
Adaptation [64.59521853145368]
Early and accurate severity assessment of Coronavirus disease 2019 (COVID-19) based on computed tomography (CT) images offers a great help to the estimation of intensive care unit event.
To augment the labeled data and improve the generalization ability of the classification model, it is necessary to aggregate data from multiple sites.
This task faces several challenges including class imbalance between mild and severe infections, domain distribution discrepancy between sites, and presence of heterogeneous features.
arXiv Detail & Related papers (2021-09-08T07:56:51Z) - Malignancy Prediction and Lesion Identification from Clinical
Dermatological Images [65.1629311281062]
We consider machine-learning-based malignancy prediction and lesion identification from clinical dermatological images.
We first identify all lesions present in the image regardless of sub-type or likelihood of malignancy, then it estimates their likelihood of malignancy, and through aggregation, it also generates an image-level likelihood of malignancy.
arXiv Detail & Related papers (2021-04-02T20:52:05Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
We present a relation-driven semi-supervised framework for medical image classification.
It exploits the unlabeled data by encouraging the prediction consistency of given input under perturbations.
Our method outperforms many state-of-the-art semi-supervised learning methods on both single-label and multi-label image classification scenarios.
arXiv Detail & Related papers (2020-05-15T06:57:54Z) - Modeling and Enhancing Low-quality Retinal Fundus Images [167.02325845822276]
Low-quality fundus images increase uncertainty in clinical observation and lead to the risk of misdiagnosis.
We propose a clinically oriented fundus enhancement network (cofe-Net) to suppress global degradation factors.
Experiments on both synthetic and real images demonstrate that our algorithm effectively corrects low-quality fundus images without losing retinal details.
arXiv Detail & Related papers (2020-05-12T08:01:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.