論文の概要: Beyond Boundaries: A Comprehensive Survey of Transferable Attacks on AI
Systems
- arxiv url: http://arxiv.org/abs/2311.11796v1
- Date: Mon, 20 Nov 2023 14:29:45 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-21 18:39:57.357663
- Title: Beyond Boundaries: A Comprehensive Survey of Transferable Attacks on AI
Systems
- Title(参考訳): 境界を越えて: AIシステムに対する転送可能な攻撃に関する総合的な調査
- Authors: Guangjing Wang, Ce Zhou, Yuanda Wang, Bocheng Chen, Hanqing Guo and
Qiben Yan
- Abstract要約: トランスファービリティの観点から学習に基づく攻撃について検討する。
本稿では,既存攻撃のアーキテクチャを様々な観点から分類し,レビューする。
自律運転のような現実的なシナリオにおける移動可能な攻撃の影響について検討する。
- 参考スコア(独自算出の注目度): 9.015049689314859
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Artificial Intelligence (AI) systems such as autonomous vehicles, facial
recognition, and speech recognition systems are increasingly integrated into
our daily lives. However, despite their utility, these AI systems are
vulnerable to a wide range of attacks such as adversarial, backdoor, data
poisoning, membership inference, model inversion, and model stealing attacks.
In particular, numerous attacks are designed to target a particular model or
system, yet their effects can spread to additional targets, referred to as
transferable attacks. Although considerable efforts have been directed toward
developing transferable attacks, a holistic understanding of the advancements
in transferable attacks remains elusive. In this paper, we comprehensively
explore learning-based attacks from the perspective of transferability,
particularly within the context of cyber-physical security. We delve into
different domains -- the image, text, graph, audio, and video domains -- to
highlight the ubiquitous and pervasive nature of transferable attacks. This
paper categorizes and reviews the architecture of existing attacks from various
viewpoints: data, process, model, and system. We further examine the
implications of transferable attacks in practical scenarios such as autonomous
driving, speech recognition, and large language models (LLMs). Additionally, we
outline the potential research directions to encourage efforts in exploring the
landscape of transferable attacks. This survey offers a holistic understanding
of the prevailing transferable attacks and their impacts across different
domains.
- Abstract(参考訳): 自動運転車、顔認識、音声認識システムといった人工知能(AI)システムは、私たちの日常生活にますます統合されています。
しかし、これらのAIシステムは実用性にもかかわらず、敵、バックドア、データ中毒、メンバーシップ推論、モデル反転、モデル盗難攻撃など、幅広い攻撃に対して脆弱である。
特に、多くの攻撃は特定のモデルやシステムをターゲットに設計されているが、その効果は転送可能な攻撃と呼ばれる追加の標的に拡がることができる。
転送可能な攻撃の開発に向けてかなりの努力が続けられてきたが、転送可能な攻撃の進展に関する全体的な理解はいまだ解明されていない。
本稿では,トランスファービリティの観点から,特にサイバー物理セキュリティの観点から学習ベースの攻撃を包括的に検討する。
画像、テキスト、グラフ、音声、ビデオといったさまざまなドメインにまたがって、転送可能な攻撃のユビキタスで広く普及する性質を強調しています。
本稿では、データ、プロセス、モデル、システムといった様々な視点から、既存の攻撃のアーキテクチャを分類し、レビューする。
さらに,自動運転や音声認識,大規模言語モデル(llm)といった実用シナリオにおける移動可能攻撃の意義について検討する。
さらに,移動可能な攻撃の展望を探求する取り組みを促進するために,今後の研究方向について概説する。
この調査は、転送可能な攻撃とその異なるドメインに対する影響について、全体的な理解を提供する。
関連論文リスト
- Towards Transferable Attacks Against Vision-LLMs in Autonomous Driving with Typography [21.632703081999036]
Vision-Large-Language-Models (Vision-LLMs)は、自律走行(AD)システムに統合されつつある。
我々は,ビジョンLLMの意思決定能力に頼って,ADシステムに対するタイポグラフィー攻撃を活用することを提案する。
論文 参考訳(メタデータ) (2024-05-23T04:52:02Z) - CANEDERLI: On The Impact of Adversarial Training and Transferability on CAN Intrusion Detection Systems [17.351539765989433]
車両と外部ネットワークの統合が拡大し、コントロールエリアネットワーク(CAN)の内部バスをターゲットにした攻撃が急増した。
対策として,様々な侵入検知システム(IDS)が文献で提案されている。
これらのシステムのほとんどは、機械学習(ML)やディープラーニング(DL)モデルのような、データ駆動のアプローチに依存しています。
本稿では,CANベースのIDSをセキュアにするための新しいフレームワークであるCANEDERLIを提案する。
論文 参考訳(メタデータ) (2024-04-06T14:54:11Z) - Mutual-modality Adversarial Attack with Semantic Perturbation [81.66172089175346]
本稿では,相互モダリティ最適化スキームにおける敵攻撃を生成する新しい手法を提案する。
我々の手法は最先端の攻撃方法より優れており、プラグイン・アンド・プレイ・ソリューションとして容易にデプロイできる。
論文 参考訳(メタデータ) (2023-12-20T05:06:01Z) - Unscrambling the Rectification of Adversarial Attacks Transferability
across Computer Networks [4.576324217026666]
畳み込みニューラルネットワーク(CNN)モデルは、最先端のパフォーマンスを達成する上で重要な役割を果たす。
CNNは敵の攻撃を受けやすいため、妥協することができる。
本稿では,攻撃の強さを向上し,CNNにおける敵例の伝達可能性を評価するための,新しい包括的手法を提案する。
論文 参考訳(メタデータ) (2023-10-26T22:36:24Z) - A Survey on Transferability of Adversarial Examples across Deep Neural Networks [53.04734042366312]
逆の例では、機械学習モデルを操作して誤った予測を行うことができます。
敵の例の転送可能性により、ターゲットモデルの詳細な知識を回避できるブラックボックス攻撃が可能となる。
本研究は, 対角移動可能性の展望を考察した。
論文 参考訳(メタデータ) (2023-10-26T17:45:26Z) - Investigating Human-Identifiable Features Hidden in Adversarial
Perturbations [54.39726653562144]
我々の研究では、最大5つの攻撃アルゴリズムを3つのデータセットにわたって探索する。
対人摂動における人間の識別可能な特徴を同定する。
画素レベルのアノテーションを用いて、そのような特徴を抽出し、ターゲットモデルに妥協する能力を実証する。
論文 参考訳(メタデータ) (2023-09-28T22:31:29Z) - Fact-Saboteurs: A Taxonomy of Evidence Manipulation Attacks against
Fact-Verification Systems [80.3811072650087]
証拠のクレームサレントスニペットを微調整し,多様かつクレームアラインな証拠を生成することが可能であることを示す。
この攻撃は、主張のポストホックな修正に対しても堅牢である。
これらの攻撃は、インスペクタブルとヒューマン・イン・ザ・ループの使用シナリオに有害な影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2022-09-07T13:39:24Z) - The Feasibility and Inevitability of Stealth Attacks [63.14766152741211]
我々は、攻撃者が汎用人工知能システムにおける決定を制御できる新しい敵の摂動について研究する。
敵対的なデータ修正とは対照的に、ここで考慮する攻撃メカニズムには、AIシステム自体の変更が含まれる。
論文 参考訳(メタデータ) (2021-06-26T10:50:07Z) - Adversarial Attack Attribution: Discovering Attributable Signals in
Adversarial ML Attacks [0.7883722807601676]
自動運転車やML-as-a-serviceのような生産システムでさえ、逆の入力の影響を受けやすい。
摂動入力は、攻撃を生成するために使われるメソッドに起因できるだろうか?
敵対攻撃属性の概念を導入し、敵対攻撃における攻撃可能信号の発見可能性を調べるための単純な教師付き学習実験フレームワークを作成する。
論文 参考訳(メタデータ) (2021-01-08T08:16:41Z) - Measurement-driven Security Analysis of Imperceptible Impersonation
Attacks [54.727945432381716]
本稿では,ディープニューラルネットワークを用いた顔認識システムの実用性について検討する。
皮膚の色,性別,年齢などの要因が,特定の標的に対する攻撃を行う能力に影響を及ぼすことを示す。
また,攻撃者の顔のさまざまなポーズや視点に対して堅牢なユニバーサルアタックを構築する可能性についても検討した。
論文 参考訳(メタデータ) (2020-08-26T19:27:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。