論文の概要: CANEDERLI: On The Impact of Adversarial Training and Transferability on CAN Intrusion Detection Systems
- arxiv url: http://arxiv.org/abs/2404.04648v1
- Date: Sat, 6 Apr 2024 14:54:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-09 20:09:57.383439
- Title: CANEDERLI: On The Impact of Adversarial Training and Transferability on CAN Intrusion Detection Systems
- Title(参考訳): CANEDERLI:CAN侵入検知システムにおける対人訓練と伝達性の影響について
- Authors: Francesco Marchiori, Mauro Conti,
- Abstract要約: 車両と外部ネットワークの統合が拡大し、コントロールエリアネットワーク(CAN)の内部バスをターゲットにした攻撃が急増した。
対策として,様々な侵入検知システム(IDS)が文献で提案されている。
これらのシステムのほとんどは、機械学習(ML)やディープラーニング(DL)モデルのような、データ駆動のアプローチに依存しています。
本稿では,CANベースのIDSをセキュアにするための新しいフレームワークであるCANEDERLIを提案する。
- 参考スコア(独自算出の注目度): 17.351539765989433
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The growing integration of vehicles with external networks has led to a surge in attacks targeting their Controller Area Network (CAN) internal bus. As a countermeasure, various Intrusion Detection Systems (IDSs) have been suggested in the literature to prevent and mitigate these threats. With the increasing volume of data facilitated by the integration of Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communication networks, most of these systems rely on data-driven approaches such as Machine Learning (ML) and Deep Learning (DL) models. However, these systems are susceptible to adversarial evasion attacks. While many researchers have explored this vulnerability, their studies often involve unrealistic assumptions, lack consideration for a realistic threat model, and fail to provide effective solutions. In this paper, we present CANEDERLI (CAN Evasion Detection ResiLIence), a novel framework for securing CAN-based IDSs. Our system considers a realistic threat model and addresses the impact of adversarial attacks on DL-based detection systems. Our findings highlight strong transferability properties among diverse attack methodologies by considering multiple state-of-the-art attacks and model architectures. We analyze the impact of adversarial training in addressing this threat and propose an adaptive online adversarial training technique outclassing traditional fine-tuning methodologies with F1 scores up to 0.941. By making our framework publicly available, we aid practitioners and researchers in assessing the resilience of IDSs to a varied adversarial landscape.
- Abstract(参考訳): 車両と外部ネットワークの統合が拡大し、コントロールエリアネットワーク(CAN)の内部バスをターゲットにした攻撃が急増した。
対策として,様々な侵入検知システム(IDS)が文献で提案されている。
車両間通信(V2V)と車両間通信(V2I)の統合によるデータ量の増大に伴い、これらのシステムの多くは機械学習(ML)やディープラーニング(DL)モデルのようなデータ駆動型アプローチに依存している。
しかし、これらのシステムは敵の回避攻撃の影響を受けやすい。
多くの研究者がこの脆弱性を調査しているが、彼らの研究は非現実的な仮定、現実的な脅威モデルへの考慮の欠如、効果的な解決策の提供に失敗することが多い。
本稿では、CANベースのIDSを保護するための新しいフレームワークであるCaneDERLI(CAN Evasion Detection Resilience)を提案する。
本システムは,現実的な脅威モデルであり,DLに基づく検知システムに対する敵攻撃の影響に対処する。
本研究は,複数の最先端攻撃とモデルアーキテクチャを考慮し,多様な攻撃手法間での強い伝達性特性を明らかにする。
本稿では,この脅威に対処する上での対人訓練の効果を分析し,F1スコアが0.941までの従来の微調整手法を駆使した適応型オンライン対人訓練手法を提案する。
当社のフレームワークを一般公開することで,IDSのレジリエンスをさまざまな対向的な環境に適応する上で,実践者や研究者を支援することができる。
関連論文リスト
- Towards Transferable Attacks Against Vision-LLMs in Autonomous Driving with Typography [21.632703081999036]
Vision-Large-Language-Models (Vision-LLMs)は、自律走行(AD)システムに統合されつつある。
我々は,ビジョンLLMの意思決定能力に頼って,ADシステムに対するタイポグラフィー攻撃を活用することを提案する。
論文 参考訳(メタデータ) (2024-05-23T04:52:02Z) - Analyzing Adversarial Inputs in Deep Reinforcement Learning [53.3760591018817]
本稿では, 正当性検証のレンズを用いて, 逆入力の特性を包括的に解析する。
このような摂動に対する感受性に基づいてモデルを分類するために、新しい計量である逆数率(Adversarial Rate)を導入する。
本分析は, 直交入力が所定のDRLシステムの安全性にどのように影響するかを実証的に示す。
論文 参考訳(メタデータ) (2024-02-07T21:58:40Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - Beyond Boundaries: A Comprehensive Survey of Transferable Attacks on AI
Systems [9.015049689314859]
トランスファービリティの観点から学習に基づく攻撃について検討する。
本稿では,既存攻撃のアーキテクチャを様々な観点から分類し,レビューする。
自律運転のような現実的なシナリオにおける移動可能な攻撃の影響について検討する。
論文 参考訳(メタデータ) (2023-11-20T14:29:45Z) - When Authentication Is Not Enough: On the Security of Behavioral-Based Driver Authentication Systems [53.2306792009435]
我々はランダムフォレストとリカレントニューラルネットワークアーキテクチャに基づく2つの軽量ドライバ認証システムを開発した。
我々は,SMARTCANとGANCANという2つの新しいエスケープアタックを開発することで,これらのシステムに対する攻撃を最初に提案する。
コントリビューションを通じて、これらのシステムを安全に採用する実践者を支援し、車の盗難を軽減し、ドライバーのセキュリティを高める。
論文 参考訳(メタデータ) (2023-06-09T14:33:26Z) - LCCDE: A Decision-Based Ensemble Framework for Intrusion Detection in
The Internet of Vehicles [7.795462813462946]
悪意のあるサイバー攻撃を識別できる侵入検知システム(IDS)が開発されている。
我々は、LCCDE(Lead Class and Confidence Decision Ensemble)という新しいアンサンブルIDSフレームワークを提案する。
LCCDEは、3つの高度なアルゴリズムの中で最高のパフォーマンスのMLモデルを決定することで構成される。
論文 参考訳(メタデータ) (2022-08-05T22:30:34Z) - Downlink Power Allocation in Massive MIMO via Deep Learning: Adversarial
Attacks and Training [62.77129284830945]
本稿では,無線環境における回帰問題を考察し,敵攻撃がDLベースのアプローチを損なう可能性があることを示す。
また,攻撃に対するDLベースの無線システムの堅牢性が著しく向上することを示す。
論文 参考訳(メタデータ) (2022-06-14T04:55:11Z) - Adversarial Machine Learning In Network Intrusion Detection Domain: A
Systematic Review [0.0]
ディープラーニングモデルは、誤った分類決定を行うためにモデルを誤解させる可能性のあるデータインスタンスに対して脆弱であることがわかった。
本調査では,ネットワーク侵入検出分野における敵機械学習のさまざまな側面を利用した研究について検討する。
論文 参考訳(メタデータ) (2021-12-06T19:10:23Z) - Measurement-driven Security Analysis of Imperceptible Impersonation
Attacks [54.727945432381716]
本稿では,ディープニューラルネットワークを用いた顔認識システムの実用性について検討する。
皮膚の色,性別,年齢などの要因が,特定の標的に対する攻撃を行う能力に影響を及ぼすことを示す。
また,攻撃者の顔のさまざまなポーズや視点に対して堅牢なユニバーサルアタックを構築する可能性についても検討した。
論文 参考訳(メタデータ) (2020-08-26T19:27:27Z) - Adversarial Attacks on Machine Learning Cybersecurity Defences in
Industrial Control Systems [2.86989372262348]
本稿では, 教師付きモデルを対象として, 対戦型サンプルを生成することで, 対戦型学習をいかに活用できるかを考察する。
また、このようなサンプルが敵の訓練を用いて教師付きモデルの堅牢性をサポートする方法についても検討している。
その結果,広く使用されている2種類の分類器であるランダムフォレスト(Random Forest)とJ48(J48)の分類性能は,逆に16~20ポイント低下した。
論文 参考訳(メタデータ) (2020-04-10T12:05:33Z) - Enhanced Adversarial Strategically-Timed Attacks against Deep
Reinforcement Learning [91.13113161754022]
本稿では,DRLに基づくナビゲーションシステムに対して,選択した時間フレーム上の物理ノイズパターンを妨害することにより,タイミングに基づく逆方向戦略を導入する。
実験結果から, 対向タイミング攻撃は性能低下を引き起こす可能性が示唆された。
論文 参考訳(メタデータ) (2020-02-20T21:39:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。