Neural Graph Collaborative Filtering Using Variational Inference
- URL: http://arxiv.org/abs/2311.11824v2
- Date: Sat, 2 Dec 2023 18:43:13 GMT
- Title: Neural Graph Collaborative Filtering Using Variational Inference
- Authors: Narges Sadat Fazeli Dehkordi, Hadi Zare, Parham Moradi, Mahdi Jalili
- Abstract summary: We introduce variational embedding collaborative filtering (GVECF) as a novel framework to incorporate representations learned through a variational graph auto-encoder.
Our proposed method achieves up to 13.78% improvement in the recall over the test data.
- Score: 19.80976833118502
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The customization of recommended content to users holds significant
importance in enhancing user experiences across a wide spectrum of applications
such as e-commerce, music, and shopping. Graph-based methods have achieved
considerable performance by capturing user-item interactions. However, these
methods tend to utilize randomly constructed embeddings in the dataset used for
training the recommender, which lacks any user preferences. Here, we propose
the concept of variational embeddings as a means of pre-training the
recommender system to improve the feature propagation through the layers of
graph convolutional networks (GCNs). The graph variational embedding
collaborative filtering (GVECF) is introduced as a novel framework to
incorporate representations learned through a variational graph auto-encoder
which are embedded into a GCN-based collaborative filtering. This approach
effectively transforms latent high-order user-item interactions into more
trainable vectors, ultimately resulting in better performance in terms of
recall and normalized discounted cumulative gain(NDCG) metrics. The experiments
conducted on benchmark datasets demonstrate that our proposed method achieves
up to 13.78% improvement in the recall over the test data.
Related papers
- Behavior Pattern Mining-based Multi-Behavior Recommendation [22.514959709811446]
We introduce Behavior Pattern mining-based Multi-behavior Recommendation (BPMR)
BPMR extensively investigates the diverse interaction patterns between users and items, utilizing these patterns as features for making recommendations.
Our experimental evaluation on three real-world datasets demonstrates that BPMR significantly outperforms existing state-of-the-art algorithms.
arXiv Detail & Related papers (2024-08-22T06:41:59Z) - Amplify Graph Learning for Recommendation via Sparsity Completion [16.32861024767423]
Graph learning models have been widely deployed in collaborative filtering (CF) based recommendation systems.
Due to the issue of data sparsity, the graph structure of the original input lacks potential positive preference edges.
We propose an Amplify Graph Learning framework based on Sparsity Completion (called AGL-SC)
arXiv Detail & Related papers (2024-06-27T08:26:20Z) - Adaptive spectral graph wavelets for collaborative filtering [5.547800834335382]
Collaborative filtering is a popular approach in recommender systems, whose objective is to provide personalized item suggestions.
We introduce a spectral graph wavelet collaborative filtering framework for implicit feedback data, where users, items and their interactions are represented as a bipartite graph.
In addition to capturing the graph's local and global structures, our approach yields localization of graph signals in both spatial and spectral domains.
arXiv Detail & Related papers (2023-12-05T22:22:25Z) - APGL4SR: A Generic Framework with Adaptive and Personalized Global
Collaborative Information in Sequential Recommendation [86.29366168836141]
We propose a graph-driven framework, named Adaptive and Personalized Graph Learning for Sequential Recommendation (APGL4SR)
APGL4SR incorporates adaptive and personalized global collaborative information into sequential recommendation systems.
As a generic framework, APGL4SR can outperform other baselines with significant margins.
arXiv Detail & Related papers (2023-11-06T01:33:24Z) - GUESR: A Global Unsupervised Data-Enhancement with Bucket-Cluster
Sampling for Sequential Recommendation [58.6450834556133]
We propose graph contrastive learning to enhance item representations with complex associations from the global view.
We extend the CapsNet module with the elaborately introduced target-attention mechanism to derive users' dynamic preferences.
Our proposed GUESR could not only achieve significant improvements but also could be regarded as a general enhancement strategy.
arXiv Detail & Related papers (2023-03-01T05:46:36Z) - Ordinal Graph Gamma Belief Network for Social Recommender Systems [54.9487910312535]
We develop a hierarchical Bayesian model termed ordinal graph factor analysis (OGFA), which jointly models user-item and user-user interactions.
OGFA not only achieves good recommendation performance, but also extracts interpretable latent factors corresponding to representative user preferences.
We extend OGFA to ordinal graph gamma belief network, which is a multi-stochastic-layer deep probabilistic model.
arXiv Detail & Related papers (2022-09-12T09:19:22Z) - Self-Supervised Hypergraph Transformer for Recommender Systems [25.07482350586435]
Self-Supervised Hypergraph Transformer (SHT)
Self-Supervised Hypergraph Transformer (SHT)
Cross-view generative self-supervised learning component is proposed for data augmentation over the user-item interaction graph.
arXiv Detail & Related papers (2022-07-28T18:40:30Z) - Broad Recommender System: An Efficient Nonlinear Collaborative Filtering
Approach [56.12815715932561]
We propose a new broad recommender system called Broad Collaborative Filtering (BroadCF)
Instead of Deep Neural Networks (DNNs), Broad Learning System (BLS) is used as a mapping function to learn the complex nonlinear relationships between users and items.
Extensive experiments conducted on seven benchmark datasets have confirmed the effectiveness of the proposed BroadCF algorithm.
arXiv Detail & Related papers (2022-04-20T01:25:08Z) - An Adaptive Graph Pre-training Framework for Localized Collaborative
Filtering [79.17319280791237]
We propose an adaptive graph pre-training framework for localized collaborative filtering (ADAPT)
ADAPT captures both the common knowledge across different graphs and the uniqueness for each graph.
It does not require transferring user/item embeddings, and is able to capture both the common knowledge across different graphs and the uniqueness for each graph.
arXiv Detail & Related papers (2021-12-14T06:53:13Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
Recent advances in computer vision take advantage of adversarial data augmentation to ameliorate the generalization ability of classification models.
Here, we present an effective and efficient alternative that advocates adversarial augmentation on intermediate feature embeddings.
We validate the proposed approach across diverse visual recognition tasks with representative backbone networks.
arXiv Detail & Related papers (2021-03-22T20:36:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.