Behavior Pattern Mining-based Multi-Behavior Recommendation
- URL: http://arxiv.org/abs/2408.12152v1
- Date: Thu, 22 Aug 2024 06:41:59 GMT
- Title: Behavior Pattern Mining-based Multi-Behavior Recommendation
- Authors: Haojie Li, Zhiyong Cheng, Xu Yu, Jinhuan Liu, Guanfeng Liu, Junwei Du,
- Abstract summary: We introduce Behavior Pattern mining-based Multi-behavior Recommendation (BPMR)
BPMR extensively investigates the diverse interaction patterns between users and items, utilizing these patterns as features for making recommendations.
Our experimental evaluation on three real-world datasets demonstrates that BPMR significantly outperforms existing state-of-the-art algorithms.
- Score: 22.514959709811446
- License:
- Abstract: Multi-behavior recommendation systems enhance effectiveness by leveraging auxiliary behaviors (such as page views and favorites) to address the limitations of traditional models that depend solely on sparse target behaviors like purchases. Existing approaches to multi-behavior recommendations typically follow one of two strategies: some derive initial node representations from individual behavior subgraphs before integrating them for a comprehensive profile, while others interpret multi-behavior data as a heterogeneous graph, applying graph neural networks to achieve a unified node representation. However, these methods do not adequately explore the intricate patterns of behavior among users and items. To bridge this gap, we introduce a novel algorithm called Behavior Pattern mining-based Multi-behavior Recommendation (BPMR). Our method extensively investigates the diverse interaction patterns between users and items, utilizing these patterns as features for making recommendations. We employ a Bayesian approach to streamline the recommendation process, effectively circumventing the challenges posed by graph neural network algorithms, such as the inability to accurately capture user preferences due to over-smoothing. Our experimental evaluation on three real-world datasets demonstrates that BPMR significantly outperforms existing state-of-the-art algorithms, showing an average improvement of 268.29% in Recall@10 and 248.02% in NDCG@10 metrics. The code of our BPMR is openly accessible for use and further research at https://github.com/rookitkitlee/BPMR.
Related papers
- Multi-Channel Hypergraph Contrastive Learning for Matrix Completion [37.05130230844348]
Graph neural networks (GNNs) have been widely used in matrix completion, which captures users' preferences over items.
We propose a Multi-Channel Hypergraph Contrastive Learning framework for matrix completion, named MHCL.
Experiments on five public datasets demonstrate that the proposed method significantly outperforms the current state-of-the-art approaches.
arXiv Detail & Related papers (2024-11-02T22:59:36Z) - Denoising Pre-Training and Customized Prompt Learning for Efficient Multi-Behavior Sequential Recommendation [69.60321475454843]
We propose DPCPL, the first pre-training and prompt-tuning paradigm tailored for Multi-Behavior Sequential Recommendation.
In the pre-training stage, we propose a novel Efficient Behavior Miner (EBM) to filter out the noise at multiple time scales.
Subsequently, we propose to tune the pre-trained model in a highly efficient manner with the proposed Customized Prompt Learning (CPL) module.
arXiv Detail & Related papers (2024-08-21T06:48:38Z) - Behavior-Contextualized Item Preference Modeling for Multi-Behavior Recommendation [30.715182718492244]
This paper introduces a novel approach, Behavior-Contextualized Item Preference Modeling (BCIPM) for multi-behavior recommendation.
Our proposed Behavior-Contextualized Item Preference Network discerns and learns users' specific item preferences within each behavior.
It then considers only those preferences relevant to the target behavior for final recommendations, significantly reducing noise from auxiliary behaviors.
arXiv Detail & Related papers (2024-04-28T12:46:36Z) - Neural Graph Collaborative Filtering Using Variational Inference [19.80976833118502]
We introduce variational embedding collaborative filtering (GVECF) as a novel framework to incorporate representations learned through a variational graph auto-encoder.
Our proposed method achieves up to 13.78% improvement in the recall over the test data.
arXiv Detail & Related papers (2023-11-20T15:01:33Z) - Ordinal Graph Gamma Belief Network for Social Recommender Systems [54.9487910312535]
We develop a hierarchical Bayesian model termed ordinal graph factor analysis (OGFA), which jointly models user-item and user-user interactions.
OGFA not only achieves good recommendation performance, but also extracts interpretable latent factors corresponding to representative user preferences.
We extend OGFA to ordinal graph gamma belief network, which is a multi-stochastic-layer deep probabilistic model.
arXiv Detail & Related papers (2022-09-12T09:19:22Z) - Modeling Dynamic User Preference via Dictionary Learning for Sequential
Recommendation [133.8758914874593]
Capturing the dynamics in user preference is crucial to better predict user future behaviors because user preferences often drift over time.
Many existing recommendation algorithms -- including both shallow and deep ones -- often model such dynamics independently.
This paper considers the problem of embedding a user's sequential behavior into the latent space of user preferences.
arXiv Detail & Related papers (2022-04-02T03:23:46Z) - Multi-Behavior Enhanced Recommendation with Cross-Interaction
Collaborative Relation Modeling [42.6279077675585]
This work proposes a Graph Neural Multi-Behavior Enhanced Recommendation framework.
It explicitly models the dependencies between different types of user-item interactions under a graph-based message passing architecture.
Experiments on real-world recommendation datasets show that our GNMR consistently outperforms state-of-the-art methods.
arXiv Detail & Related papers (2022-01-07T03:12:37Z) - Knowledge-Enhanced Hierarchical Graph Transformer Network for
Multi-Behavior Recommendation [56.12499090935242]
This work proposes a Knowledge-Enhanced Hierarchical Graph Transformer Network (KHGT) to investigate multi-typed interactive patterns between users and items in recommender systems.
KHGT is built upon a graph-structured neural architecture to capture type-specific behavior characteristics.
We show that KHGT consistently outperforms many state-of-the-art recommendation methods across various evaluation settings.
arXiv Detail & Related papers (2021-10-08T09:44:00Z) - Hyper Meta-Path Contrastive Learning for Multi-Behavior Recommendation [61.114580368455236]
User purchasing prediction with multi-behavior information remains a challenging problem for current recommendation systems.
We propose the concept of hyper meta-path to construct hyper meta-paths or hyper meta-graphs to explicitly illustrate the dependencies among different behaviors of a user.
Thanks to the recent success of graph contrastive learning, we leverage it to learn embeddings of user behavior patterns adaptively instead of assigning a fixed scheme to understand the dependencies among different behaviors.
arXiv Detail & Related papers (2021-09-07T04:28:09Z) - Sequential Recommendation with Self-Attentive Multi-Adversarial Network [101.25533520688654]
We present a Multi-Factor Generative Adversarial Network (MFGAN) for explicitly modeling the effect of context information on sequential recommendation.
Our framework is flexible to incorporate multiple kinds of factor information, and is able to trace how each factor contributes to the recommendation decision over time.
arXiv Detail & Related papers (2020-05-21T12:28:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.