Unveiling Contrastive Learning's Capability of Neighborhood Aggregation for Collaborative Filtering
- URL: http://arxiv.org/abs/2504.10113v1
- Date: Mon, 14 Apr 2025 11:22:41 GMT
- Title: Unveiling Contrastive Learning's Capability of Neighborhood Aggregation for Collaborative Filtering
- Authors: Yu Zhang, Yiwen Zhang, Yi Zhang, Lei Sang, Yun Yang,
- Abstract summary: graph contrastive learning (GCL) has gradually become a dominant approach in recommender systems.<n>In this paper, we reveal via theoretical derivation that the gradient descent process of the CL objective is formally equivalent to graph convolution.<n>We propose a novel neighborhood aggregation objective to bring users closer to all interacted items while pushing them away from other positive pairs.
- Score: 16.02820746003461
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Personalized recommendation is widely used in the web applications, and graph contrastive learning (GCL) has gradually become a dominant approach in recommender systems, primarily due to its ability to extract self-supervised signals from raw interaction data, effectively alleviating the problem of data sparsity. A classic GCL-based method typically uses data augmentation during graph convolution to generates more contrastive views, and performs contrast on these new views to obtain rich self-supervised signals. Despite this paradigm is effective, the reasons behind the performance gains remain a mystery. In this paper, we first reveal via theoretical derivation that the gradient descent process of the CL objective is formally equivalent to graph convolution, which implies that CL objective inherently supports neighborhood aggregation on interaction graphs. We further substantiate this capability through experimental validation and identify common misconceptions in the selection of positive samples in previous methods, which limit the potential of CL objective. Based on this discovery, we propose the Light Contrastive Collaborative Filtering (LightCCF) method, which introduces a novel neighborhood aggregation objective to bring users closer to all interacted items while pushing them away from other positive pairs, thus achieving high-quality neighborhood aggregation with very low time complexity. On three highly sparse public datasets, the proposed method effectively aggregate neighborhood information while preventing graph over-smoothing, demonstrating significant improvements over existing GCL-based counterparts in both training efficiency and recommendation accuracy. Our implementations are publicly accessible.
Related papers
- Diffusion-augmented Graph Contrastive Learning for Collaborative Filter [5.6604917723826365]
Graph-based collaborative filtering has been established as a prominent approach in recommendation systems.<n>Recent advances in Graph Contrastive Learning have demonstrated promising potential to alleviate data sparsity issues.<n>We propose Diffusion-augmented Contrastive Learning (DGCL) for enhanced collaborative filtering.
arXiv Detail & Related papers (2025-03-20T16:15:20Z) - Enhancing Graph Contrastive Learning with Reliable and Informative Augmentation for Recommendation [84.45144851024257]
We propose a novel framework that aims to enhance graph contrastive learning by constructing contrastive views with stronger collaborative information via discrete codes.<n>The core idea is to map users and items into discrete codes rich in collaborative information for reliable and informative contrastive view generation.
arXiv Detail & Related papers (2024-09-09T14:04:17Z) - Dual-Channel Latent Factor Analysis Enhanced Graph Contrastive Learning for Recommendation [2.9449497738046078]
Graph Neural Networks (GNNs) are powerful learning methods for recommender systems.
Recently, the integration of contrastive learning with GNNs has demonstrated remarkable performance in recommender systems.
This study proposes a latent factor analysis (LFA) enhanced GCL approach, named LFA-GCL.
arXiv Detail & Related papers (2024-08-09T03:24:48Z) - Fusion Self-supervised Learning for Recommendation [16.02820746003461]
We propose a Fusion Self-supervised Learning framework for recommendation.<n>Specifically, we use high-order information from GCN process to create contrastive views.<n>To integrate self-supervised signals from various CL objectives, we propose an advanced CL objective.
arXiv Detail & Related papers (2024-07-29T04:30:38Z) - RecDCL: Dual Contrastive Learning for Recommendation [65.6236784430981]
We propose a dual contrastive learning recommendation framework -- RecDCL.
In RecDCL, the FCL objective is designed to eliminate redundant solutions on user-item positive pairs.
The BCL objective is utilized to generate contrastive embeddings on output vectors for enhancing the robustness of the representations.
arXiv Detail & Related papers (2024-01-28T11:51:09Z) - CONVERT:Contrastive Graph Clustering with Reliable Augmentation [110.46658439733106]
We propose a novel CONtrastiVe Graph ClustEring network with Reliable AugmenTation (CONVERT)
In our method, the data augmentations are processed by the proposed reversible perturb-recover network.
To further guarantee the reliability of semantics, a novel semantic loss is presented to constrain the network.
arXiv Detail & Related papers (2023-08-17T13:07:09Z) - GUESR: A Global Unsupervised Data-Enhancement with Bucket-Cluster
Sampling for Sequential Recommendation [58.6450834556133]
We propose graph contrastive learning to enhance item representations with complex associations from the global view.
We extend the CapsNet module with the elaborately introduced target-attention mechanism to derive users' dynamic preferences.
Our proposed GUESR could not only achieve significant improvements but also could be regarded as a general enhancement strategy.
arXiv Detail & Related papers (2023-03-01T05:46:36Z) - GraphLearner: Graph Node Clustering with Fully Learnable Augmentation [76.63963385662426]
Contrastive deep graph clustering (CDGC) leverages the power of contrastive learning to group nodes into different clusters.
We propose a Graph Node Clustering with Fully Learnable Augmentation, termed GraphLearner.
It introduces learnable augmentors to generate high-quality and task-specific augmented samples for CDGC.
arXiv Detail & Related papers (2022-12-07T10:19:39Z) - Self-supervised Graph-based Point-of-interest Recommendation [66.58064122520747]
Next Point-of-Interest (POI) recommendation has become a prominent component in location-based e-commerce.
We propose a Self-supervised Graph-enhanced POI Recommender (S2GRec) for next POI recommendation.
In particular, we devise a novel Graph-enhanced Self-attentive layer to incorporate the collaborative signals from both global transition graph and local trajectory graphs.
arXiv Detail & Related papers (2022-10-22T17:29:34Z) - FastGCL: Fast Self-Supervised Learning on Graphs via Contrastive
Neighborhood Aggregation [26.07819501316758]
We argue that a better contrastive scheme should be tailored to the characteristics of graph neural networks.
By constructing weighted-aggregated and non-aggregated neighborhood information as positive and negative samples respectively, FastGCL identifies the potential semantic information of data.
Experiments have been conducted on node classification and graph classification tasks, showing that FastGCL has competitive classification performance and significant training speedup.
arXiv Detail & Related papers (2022-05-02T13:33:43Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
Recent advances in computer vision take advantage of adversarial data augmentation to ameliorate the generalization ability of classification models.
Here, we present an effective and efficient alternative that advocates adversarial augmentation on intermediate feature embeddings.
We validate the proposed approach across diverse visual recognition tasks with representative backbone networks.
arXiv Detail & Related papers (2021-03-22T20:36:34Z) - Mining Implicit Entity Preference from User-Item Interaction Data for
Knowledge Graph Completion via Adversarial Learning [82.46332224556257]
We propose a novel adversarial learning approach by leveraging user interaction data for the Knowledge Graph Completion task.
Our generator is isolated from user interaction data, and serves to improve the performance of the discriminator.
To discover implicit entity preference of users, we design an elaborate collaborative learning algorithms based on graph neural networks.
arXiv Detail & Related papers (2020-03-28T05:47:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.