論文の概要: Towards Human-Level Text Coding with LLMs: The Case of Fatherhood Roles in Public Policy Documents
- arxiv url: http://arxiv.org/abs/2311.11844v3
- Date: Wed, 28 Aug 2024 16:26:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-29 21:19:05.248374
- Title: Towards Human-Level Text Coding with LLMs: The Case of Fatherhood Roles in Public Policy Documents
- Title(参考訳): LLMを用いた人間レベルテキスト符号化に向けて:公共政策文書における父の役割を事例として
- Authors: Lorenzo Lupo, Oscar Magnusson, Dirk Hovy, Elin Naurin, Lena Wängnerud,
- Abstract要約: 大きな言語モデル(LLM)は、より良い結果と少ないプログラミングで自動化を約束します。
本研究では,政治科学の現場で遭遇する典型的複雑度を含む3つのプログラミング課題についてLLMを評価した。
もっとも優れたプロンプト戦略は、人間のプログラマに提供されるような、詳細なコードブックをLLMに提供することにある。
- 参考スコア(独自算出の注目度): 19.65846717628022
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in large language models (LLMs) like GPT-3.5 and GPT-4 promise automation with better results and less programming, opening up new opportunities for text analysis in political science. In this study, we evaluate LLMs on three original coding tasks involving typical complexities encountered in political science settings: a non-English language, legal and political jargon, and complex labels based on abstract constructs. Along the paper, we propose a practical workflow to optimize the choice of the model and the prompt. We find that the best prompting strategy consists of providing the LLMs with a detailed codebook, as the one provided to human coders. In this setting, an LLM can be as good as or possibly better than a human annotator while being much faster, considerably cheaper, and much easier to scale to large amounts of text. We also provide a comparison of GPT and popular open-source LLMs, discussing the trade-offs in the model's choice. Our software allows LLMs to be easily used as annotators and is publicly available: https://github.com/lorelupo/pappa.
- Abstract(参考訳): GPT-3.5やGPT-4のような大規模言語モデル(LLM)の最近の進歩は、より良い結果とプログラミングの少ない自動化を約束し、政治科学におけるテキスト分析の新しい機会を開く。
本研究では,政治科学における典型的複雑度を含む3つの本来のコーディング課題である,非英語言語,法的・政治的用語,抽象的構成に基づく複雑なラベルについて評価する。
本稿では,モデルの選択とプロンプトを最適化するための実践的なワークフローを提案する。
もっとも優れたプロンプト戦略は、人間のプログラマに提供されるような、詳細なコードブックをLLMに提供することにある。
この設定では、LDMは人間のアノテータに匹敵する、あるいはおそらくは優れているが、はるかに高速で、かなり安価で、大量のテキストにスケールするのがずっと簡単である。
また、GPTと人気のあるオープンソースLLMを比較し、モデルの選択におけるトレードオフについて議論する。
我々のソフトウェアは、LPMをアノテーションとして簡単に使用することができ、https://github.com/lorelupo/pappa.comで公開されている。
関連論文リスト
- PDL: A Declarative Prompt Programming Language [1.715270928578365]
本稿では,PDL(Prompt Declaration Language)を紹介する。
PDLは単純な宣言型データ指向言語であり、YAMLに基づいたプロンプトを前面に配置する。
大規模な言語モデル(LLM)やツールを呼び出すインタラクティブなアプリケーションの記述をサポートし、チャットボットやRAG、エージェントといった一般的なユースケースの実装を容易にする。
論文 参考訳(メタデータ) (2024-10-24T20:07:08Z) - ReMoDetect: Reward Models Recognize Aligned LLM's Generations [55.06804460642062]
大型言語モデル (LLM) は人間の好むテキストを生成する。
本稿では,これらのモデルで共有される共通特性について述べる。
報奨モデルの検出能力をさらに向上する2つのトレーニング手法を提案する。
論文 参考訳(メタデータ) (2024-05-27T17:38:33Z) - Large Language Models: A Survey [69.72787936480394]
大規模言語モデル(LLM)は、広範囲の自然言語タスクにおける強力なパフォーマンスのために、多くの注目を集めている。
LLMの汎用言語理解と生成能力は、膨大なテキストデータに基づいて数十億のモデルのパラメータを訓練することで得られる。
論文 参考訳(メタデータ) (2024-02-09T05:37:09Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
大型言語モデル(LLM)は、自然言語と形式言語(コード)の組み合わせに基づいて訓練される
コードは、標準構文、論理一貫性、抽象化、モジュール性を備えた高レベルの目標を実行可能なステップに変換する。
論文 参考訳(メタデータ) (2024-01-01T16:51:20Z) - Large Language Model-Aware In-Context Learning for Code Generation [75.68709482932903]
大規模言語モデル(LLM)は、コード生成において印象的なコンテキスト内学習(ICL)能力を示している。
コード生成のためのLAIL (LLM-Aware In-context Learning) という新しい学習ベース選択手法を提案する。
論文 参考訳(メタデータ) (2023-10-15T06:12:58Z) - How to use LLMs for Text Analysis [0.0]
本稿では,社会科学における多目的テキスト分析手法としてLarge Language Models (LLM)を紹介する。
LLMは使いやすく、安価で、高速で、幅広いテキスト分析タスクに適用できるため、多くの学者はLLMがテキスト解析の方法を変えると考えている。
論文 参考訳(メタデータ) (2023-07-24T19:54:15Z) - Open-Source LLMs for Text Annotation: A Practical Guide for Model Setting and Fine-Tuning [5.822010906632045]
本稿では、政治科学研究に典型的なテキスト分類タスクにおけるオープンソースのLarge Language Models(LLM)の性能について検討する。
姿勢・話題・関連分類などの課題を調べることで,テキスト分析におけるLLMの使用に関する情報的判断を学者に指導することを目指す。
論文 参考訳(メタデータ) (2023-07-05T10:15:07Z) - PALR: Personalization Aware LLMs for Recommendation [7.407353565043918]
PALRは、ユーザ履歴の振る舞い(クリック、購入、評価など)と大きな言語モデル(LLM)を組み合わせることで、ユーザの好むアイテムを生成することを目的としている。
我々のソリューションは、様々なシーケンシャルなレコメンデーションタスクにおいて最先端のモデルよりも優れています。
論文 参考訳(メタデータ) (2023-05-12T17:21:33Z) - Low-code LLM: Graphical User Interface over Large Language Models [115.08718239772107]
本稿では,人間-LLMインタラクションフレームワークであるLow-code LLMを紹介する。
より制御可能で安定した応答を実現するために、6種類のシンプルなローコードビジュアルプログラミングインタラクションを組み込んでいる。
ユーザフレンドリなインタラクション,制御可能な生成,広い適用性という,低コード LLM の3つの利点を強調した。
論文 参考訳(メタデータ) (2023-04-17T09:27:40Z) - Can Large Language Models Transform Computational Social Science? [79.62471267510963]
大規模言語モデル(LLM)は、(トレーニングデータなしで)ゼロショットで多くの言語処理タスクを実行することができる
この研究は、計算社会科学ツールとしてLLMを使用するためのロードマップを提供する。
論文 参考訳(メタデータ) (2023-04-12T17:33:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。