論文の概要: PDL: A Declarative Prompt Programming Language
- arxiv url: http://arxiv.org/abs/2410.19135v1
- Date: Thu, 24 Oct 2024 20:07:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-28 13:36:01.253297
- Title: PDL: A Declarative Prompt Programming Language
- Title(参考訳): PDL: 宣言型プロンプトプログラミング言語
- Authors: Mandana Vaziri, Louis Mandel, Claudio Spiess, Martin Hirzel,
- Abstract要約: 本稿では,PDL(Prompt Declaration Language)を紹介する。
PDLは単純な宣言型データ指向言語であり、YAMLに基づいたプロンプトを前面に配置する。
大規模な言語モデル(LLM)やツールを呼び出すインタラクティブなアプリケーションの記述をサポートし、チャットボットやRAG、エージェントといった一般的なユースケースの実装を容易にする。
- 参考スコア(独自算出の注目度): 1.715270928578365
- License:
- Abstract: Large language models (LLMs) have taken the world by storm by making many previously difficult uses of AI feasible. LLMs are controlled via highly expressive textual prompts and return textual answers. Unfortunately, this unstructured text as input and output makes LLM-based applications brittle. This motivates the rise of prompting frameworks, which mediate between LLMs and the external world. However, existing prompting frameworks either have a high learning curve or take away control over the exact prompts from the developer. To overcome this dilemma, this paper introduces the Prompt Declaration Language (PDL). PDL is a simple declarative data-oriented language that puts prompts at the forefront, based on YAML. PDL works well with many LLM platforms and LLMs. It supports writing interactive applications that call LLMs and tools, and makes it easy to implement common use-cases such as chatbots, RAG, or agents. We hope PDL will make prompt programming simpler, less brittle, and more enjoyable.
- Abstract(参考訳): 大規模な言語モデル(LLM)は、これまで多くの難解なAIの使用を可能とすることで、嵐によって世界を席巻した。
LLMは高度に表現力のあるテキストプロンプトによって制御され、テキスト応答を返す。
残念なことに、入力および出力としてのこの非構造化テキストは、LLMベースのアプリケーションを不安定にする。
このことは、LDMと外界の間を仲介するプロンプトフレームワークの台頭を動機付けている。
しかし、既存のプロンプトフレームワークは、高い学習曲線を持つか、開発者からの正確なプロンプトを制御できないかのいずれかである。
本稿では,このジレンマを克服するために,PDL(Prompt Declaration Language)を提案する。
PDLは単純な宣言型データ指向言語であり、YAMLに基づいたプロンプトを前面に配置する。
PDLは多くのLLMプラットフォームとLLMでうまく機能する。
LLMやツールを呼び出すインタラクティブなアプリケーションの記述をサポートし、チャットボットやRAG、エージェントといった一般的なユースケースの実装を容易にする。
PDLが迅速なプログラミングをシンプルにし、脆く、より楽しいものにすることを願っています。
関連論文リスト
- RePrompt: Planning by Automatic Prompt Engineering for Large Language Models Agents [27.807695570974644]
大規模言語モデル(LLM)は、従来の自然言語処理以外の領域で顕著な成功を収めている。
LLMエージェントのプロンプトにおけるステップバイステップ命令を最適化する「段階的な降下」を行う新しい手法である textscRePrompt を提案する。
論文 参考訳(メタデータ) (2024-06-17T01:23:11Z) - MTLLM: LLMs are Meaning-Typed Code Constructs [7.749453456370407]
本稿では,大規模言語モデル(LLM)をプログラミングに統合するための簡易なアプローチを提案する。
提案手法は,従来のプログラミング言語と自然言語を自動的に翻訳するために,既存のプログラムのセマンティック・リッチネスを利用する。
そこで本研究では,SOTA LLMソフトウェア開発ツールと比較し,本手法の完全機能および実運用レベルの実装について述べる。
論文 参考訳(メタデータ) (2024-05-14T21:12:01Z) - From LLMs to Actions: Latent Codes as Bridges in Hierarchical Robot Control [58.72492647570062]
我々は,制限を克服する代替アーキテクチャとして,Learningable Latent Codes as Bridges (LCB)を導入した。
methodoutperforms baselines that leverage pure language as the interface layer on tasks that requires reasoning and multi-step behaviors。
論文 参考訳(メタデータ) (2024-05-08T04:14:06Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
大型言語モデル(LLM)は、自然言語と形式言語(コード)の組み合わせに基づいて訓練される
コードは、標準構文、論理一貫性、抽象化、モジュール性を備えた高レベルの目標を実行可能なステップに変換する。
論文 参考訳(メタデータ) (2024-01-01T16:51:20Z) - AlignedCoT: Prompting Large Language Models via Native-Speaking Demonstrations [52.43593893122206]
Alignedcotは、大規模言語モデルを呼び出すためのコンテキスト内学習技術である。
ゼロショットシナリオでは、一貫した正しいステップワイズプロンプトを達成する。
数学的推論とコモンセンス推論の実験を行う。
論文 参考訳(メタデータ) (2023-11-22T17:24:21Z) - Towards Human-Level Text Coding with LLMs: The Case of Fatherhood Roles in Public Policy Documents [19.65846717628022]
大きな言語モデル(LLM)は、より良い結果と少ないプログラミングで自動化を約束します。
本研究では,政治科学の現場で遭遇する典型的複雑度を含む3つのプログラミング課題についてLLMを評価した。
もっとも優れたプロンプト戦略は、人間のプログラマに提供されるような、詳細なコードブックをLLMに提供することにある。
論文 参考訳(メタデータ) (2023-11-20T15:34:45Z) - LM-Polygraph: Uncertainty Estimation for Language Models [71.21409522341482]
不確実性推定(UE)手法は、大規模言語モデル(LLM)の安全性、責任性、効果的な利用のための1つの経路である。
テキスト生成タスクにおけるLLMの最先端UEメソッドのバッテリを実装したフレームワークであるLM-PolygraphをPythonで統一したプログラムインタフェースで導入する。
研究者によるUEテクニックの一貫した評価のための拡張可能なベンチマークと、信頼スコア付き標準チャットダイアログを強化するデモWebアプリケーションを導入している。
論文 参考訳(メタデータ) (2023-11-13T15:08:59Z) - Low-code LLM: Graphical User Interface over Large Language Models [115.08718239772107]
本稿では,人間-LLMインタラクションフレームワークであるLow-code LLMを紹介する。
より制御可能で安定した応答を実現するために、6種類のシンプルなローコードビジュアルプログラミングインタラクションを組み込んでいる。
ユーザフレンドリなインタラクション,制御可能な生成,広い適用性という,低コード LLM の3つの利点を強調した。
論文 参考訳(メタデータ) (2023-04-17T09:27:40Z) - Check Your Facts and Try Again: Improving Large Language Models with
External Knowledge and Automated Feedback [127.75419038610455]
大規模言語モデル(LLM)は、ダウンストリームタスクの多くに対して、人間のような、流動的な応答を生成することができる。
本稿では,プラグ・アンド・プレイモジュールのセットでブラックボックスのLSMを増強するLSM-Augmenterシステムを提案する。
論文 参考訳(メタデータ) (2023-02-24T18:48:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。