Adiabatic quantum trajectories in engineered reservoirs
- URL: http://arxiv.org/abs/2311.11937v2
- Date: Fri, 5 Jul 2024 12:52:02 GMT
- Title: Adiabatic quantum trajectories in engineered reservoirs
- Authors: Emma C. King, Luigi Giannelli, Raphaƫl Menu, Johannes N. Kriel, Giovanna Morigi,
- Abstract summary: We analyze the efficiency of protocols for adiabatic quantum state transfer assisted by an engineered reservoir.
Our study contributes to the theory of shortcuts to adiabaticity for open quantum systems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We analyze the efficiency of protocols for adiabatic quantum state transfer assisted by an engineered reservoir. The target dynamics is a quantum trajectory in the Hilbert space and is a fixed point of a time-dependent master equation in the limit of adiabatic dynamics. We specialize to quantum state transfer in a qubit and determine the optimal schedule for a class of time-dependent Lindblad equations. The speed limit on state transfer is extracted from a physical model of a qubit coupled to a reservoir, from which the Lindblad equation is derived in the Born-Markov limit. Our analysis shows that the resulting efficiency is comparable to the efficiency of the optimal unitary dynamics. Numerical studies indicate that reservoir-engineered protocols could outperform unitary protocols outside the regime of the Born-Markov master equation, namely, when correlations between the qubit and reservoir become relevant. Our study contributes to the theory of shortcuts to adiabaticity for open quantum systems and to the toolbox of protocols of the NISQ era.
Related papers
- Shortcuts to adiabaticity in harmonic traps: a quantum-classical analog [0.10713888959520208]
We present a new technique for efficiently transitioning a quantum system from an initial to a final stationary state.
Our approach makes use of Nelson's quantization, which represents the quantum system as a classical Brownian process.
arXiv Detail & Related papers (2024-05-03T09:19:24Z) - Dynamical invariant based shortcut to equilibration in open quantum systems [0.0]
We propose using the Lewis-Riesenfeld invariant to speed-up the equilibration of a driven open quantum system.
We show that our protocol can achieve a high-fidelity control in shorter timescales than simple non-optimized protocols.
arXiv Detail & Related papers (2024-01-22T02:32:27Z) - Neural-network quantum states for ultra-cold Fermi gases [49.725105678823915]
This work introduces a novel Pfaffian-Jastrow neural-network quantum state that includes backflow transformation based on message-passing architecture.
We observe the emergence of strong pairing correlations through the opposite-spin pair distribution functions.
Our findings suggest that neural-network quantum states provide a promising strategy for studying ultra-cold Fermi gases.
arXiv Detail & Related papers (2023-05-15T17:46:09Z) - Quantum Gate Generation in Two-Level Open Quantum Systems by Coherent
and Incoherent Photons Found with Gradient Search [77.34726150561087]
We consider an environment formed by incoherent photons as a resource for controlling open quantum systems via an incoherent control.
We exploit a coherent control in the Hamiltonian and an incoherent control in the dissipator which induces the time-dependent decoherence rates.
arXiv Detail & Related papers (2023-02-28T07:36:02Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Fast adiabatic control of an optomechanical cavity [62.997667081978825]
We present a shortcut to adiabaticity for the control of an optomechanical cavity with two moving mirrors.
We find analytical expressions that give us effective trajectories which implement a STA for the quantum field inside the cavity.
arXiv Detail & Related papers (2022-11-09T15:32:28Z) - Quantum-classical distance as a tool to design optimal chiral quantum
walk [0.0]
Continuous-time quantum walks (CTQWs) provide a valuable model for quantum transport, universal quantum computation and quantum spatial search.
We argue that the quantum-classical distance, a figure of merit introduced to capture the difference in dynamics between a CTQW and its classical counterpart, guides the optimization of parameters of the Hamiltonian.
arXiv Detail & Related papers (2021-06-22T11:38:58Z) - Assessment of weak-coupling approximations on a driven two-level system
under dissipation [58.720142291102135]
We study a driven qubit through the numerically exact and non-perturbative method known as the Liouville-von equation with dissipation.
We propose a metric that may be used in experiments to map the regime of validity of the Lindblad equation in predicting the steady state of the driven qubit.
arXiv Detail & Related papers (2020-11-11T22:45:57Z) - Variational Quantum Eigensolver for Frustrated Quantum Systems [0.0]
A variational quantum eigensolver, or VQE, is designed to determine a global minimum in an energy landscape specified by a quantum Hamiltonian.
Here we consider the performance of the VQE technique for a Hubbard-like model describing a one-dimensional chain of fermions.
We also study the barren plateau phenomenon for the Hamiltonian in question and find that the severity of this effect depends on the encoding of fermions to qubits.
arXiv Detail & Related papers (2020-05-01T18:00:01Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.