CAT: LoCalization and IdentificAtion Cascade Detection Transformer for
Open-World Object Detection
- URL: http://arxiv.org/abs/2301.01970v6
- Date: Mon, 27 Mar 2023 11:37:27 GMT
- Title: CAT: LoCalization and IdentificAtion Cascade Detection Transformer for
Open-World Object Detection
- Authors: Shuailei Ma, Yuefeng Wang, Jiaqi Fan, Ying Wei, Thomas H. Li, Hongli
Liu and Fanbing Lv
- Abstract summary: Open-world object detection requires a model trained from data on known objects to detect both known and unknown objects.
We propose a novel solution called CAT: LoCalization and IdentificAtion Cascade Detection Transformer.
We show that our model outperforms the state-of-the-art in terms of all metrics in the task of OWOD, incremental object detection (IOD) and open-set detection.
- Score: 17.766859354014663
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Open-world object detection (OWOD), as a more general and challenging goal,
requires the model trained from data on known objects to detect both known and
unknown objects and incrementally learn to identify these unknown objects. The
existing works which employ standard detection framework and fixed
pseudo-labelling mechanism (PLM) have the following problems: (i) The inclusion
of detecting unknown objects substantially reduces the model's ability to
detect known ones. (ii) The PLM does not adequately utilize the priori
knowledge of inputs. (iii) The fixed selection manner of PLM cannot guarantee
that the model is trained in the right direction. We observe that humans
subconsciously prefer to focus on all foreground objects and then identify each
one in detail, rather than localize and identify a single object
simultaneously, for alleviating the confusion. This motivates us to propose a
novel solution called CAT: LoCalization and IdentificAtion Cascade Detection
Transformer which decouples the detection process via the shared decoder in the
cascade decoding way. In the meanwhile, we propose the self-adaptive
pseudo-labelling mechanism which combines the model-driven with input-driven
PLM and self-adaptively generates robust pseudo-labels for unknown objects,
significantly improving the ability of CAT to retrieve unknown objects.
Comprehensive experiments on two benchmark datasets, i.e., MS-COCO and PASCAL
VOC, show that our model outperforms the state-of-the-art in terms of all
metrics in the task of OWOD, incremental object detection (IOD) and open-set
detection.
Related papers
- OSAD: Open-Set Aircraft Detection in SAR Images [1.1060425537315088]
Open-set detection aims to enable detectors trained on a closed set to detect all known objects and identify unknown objects in open-set environments.
To address these challenges, a novel open-set aircraft detector for SAR images is proposed, named Open-Set Aircraft Detection (OSAD)
It is equipped with three dedicated components: global context modeling (GCM), location quality-driven pseudo labeling generation (LPG), and prototype contrastive learning (PCL)
arXiv Detail & Related papers (2024-11-03T15:06:14Z) - Semi-supervised Open-World Object Detection [74.95267079505145]
We introduce a more realistic formulation, named semi-supervised open-world detection (SS-OWOD)
We demonstrate that the performance of the state-of-the-art OWOD detector dramatically deteriorates in the proposed SS-OWOD setting.
Our experiments on 4 datasets including MS COCO, PASCAL, Objects365 and DOTA demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2024-02-25T07:12:51Z) - Unsupervised Recognition of Unknown Objects for Open-World Object
Detection [28.787586991713535]
Open-World Object Detection (OWOD) extends object detection problem to a realistic and dynamic scenario.
Current OWOD models, such as ORE and OW-DETR, focus on pseudo-labeling regions with high objectness scores as unknowns.
This paper proposes a novel approach that learns an unsupervised discriminative model to recognize true unknown objects.
arXiv Detail & Related papers (2023-08-31T08:17:29Z) - Semi-Supervised and Long-Tailed Object Detection with CascadeMatch [91.86787064083012]
We propose a novel pseudo-labeling-based detector called CascadeMatch.
Our detector features a cascade network architecture, which has multi-stage detection heads with progressive confidence thresholds.
We show that CascadeMatch surpasses existing state-of-the-art semi-supervised approaches in handling long-tailed object detection.
arXiv Detail & Related papers (2023-05-24T07:09:25Z) - SalienDet: A Saliency-based Feature Enhancement Algorithm for Object
Detection for Autonomous Driving [160.57870373052577]
We propose a saliency-based OD algorithm (SalienDet) to detect unknown objects.
Our SalienDet utilizes a saliency-based algorithm to enhance image features for object proposal generation.
We design a dataset relabeling approach to differentiate the unknown objects from all objects in training sample set to achieve Open-World Detection.
arXiv Detail & Related papers (2023-05-11T16:19:44Z) - Open-World Object Detection via Discriminative Class Prototype Learning [4.055884768256164]
Open-world object detection (OWOD) is a challenging problem that combines object detection with incremental learning and open-set learning.
We propose a novel and efficient OWOD solution from a prototype perspective, which we call OCPL: Open-world object detection via discnative OCPL: Open-world object detection via discriminative OCPL: Open-world object detection via discriminative OCPL: Open-world object detection via discriminative OCPL: Open-world object detection via discriminative OCPL: Open-world object detection via discriminative OCPL: Open-world object detection via
arXiv Detail & Related papers (2023-02-23T03:05:04Z) - Open World DETR: Transformer based Open World Object Detection [60.64535309016623]
We propose a two-stage training approach named Open World DETR for open world object detection based on Deformable DETR.
We fine-tune the class-specific components of the model with a multi-view self-labeling strategy and a consistency constraint.
Our proposed method outperforms other state-of-the-art open world object detection methods by a large margin.
arXiv Detail & Related papers (2022-12-06T13:39:30Z) - PROB: Probabilistic Objectness for Open World Object Detection [15.574535196804042]
Open World Object Detection (OWOD) is a new computer vision task that bridges the gap between classic object detection (OD) benchmarks and object detection in the real world.
We introduce a novel probabilistic framework for objectness estimation, where we alternate between probability distribution estimation and objectness likelihood of known objects.
The resulting Probabilistic Objectness transformer-based open-world detector, PROB, integrates our framework into traditional object detection models.
arXiv Detail & Related papers (2022-12-02T20:04:24Z) - OW-DETR: Open-world Detection Transformer [90.56239673123804]
We introduce a novel end-to-end transformer-based framework, OW-DETR, for open-world object detection.
OW-DETR comprises three dedicated components namely, attention-driven pseudo-labeling, novelty classification and objectness scoring.
Our model outperforms the recently introduced OWOD approach, ORE, with absolute gains ranging from 1.8% to 3.3% in terms of unknown recall.
arXiv Detail & Related papers (2021-12-02T18:58:30Z) - Uncertainty for Identifying Open-Set Errors in Visual Object Detection [31.533136658421892]
GMM-Det is a real-time method for extracting uncertainty from object detectors to identify and reject open-set errors.
We show that GMM-Det consistently outperforms existing uncertainty techniques for identifying and rejecting open-set detections.
arXiv Detail & Related papers (2021-04-03T07:12:31Z) - Slender Object Detection: Diagnoses and Improvements [74.40792217534]
In this paper, we are concerned with the detection of a particular type of objects with extreme aspect ratios, namely textbfslender objects.
For a classical object detection method, a drastic drop of $18.9%$ mAP on COCO is observed, if solely evaluated on slender objects.
arXiv Detail & Related papers (2020-11-17T09:39:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.